Using Radar-Derived Parameters to Develop Probabilistic Guidance for Lightning Cessation within Isolated Convection near Cape Canaveral, Florida

Joseph R. Patton Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida

Search for other papers by Joseph R. Patton in
Current site
Google Scholar
PubMed
Close
and
Henry E. Fuelberg Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida

Search for other papers by Henry E. Fuelberg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Thunderstorms in central Florida frequently halt outdoor activities, requiring that one wait some prescribed time after an assumed last flash before safely resuming activities. The goal of this research is to develop a high-skill probabilistic method that can be used in high pressure real-world operations to terminate lightning warnings more quickly while maintaining safety. Probabilistic guidance tools are created for isolated warm season storms in central Florida using dual-polarized radar data at 1-min intervals. The parameters examined are maximum reflectivity and graupel presence at the 0°, −5°, −10°, −15°, and −20°C levels as well as composite reflectivity. Random samples of the radar data are used to train a generalized linear model (GLM) to make a probabilistic prediction whether a given flash is the storm’s last flash. The most statistically significant predictors for lightning cessation are found to be the storm’s maximum reflectivity in the composite and the 0°C levels, along with graupel presence or absence at the −5°, −10°, −15°, and −20°C levels. Statistical verification is used to analyze the performance of the two GLMs at different probability thresholds (95.0%, 97.5%, and 99.0%). When applying the cessation guidance as though storms are occurring in real time, results showed ~99% of the storms produced no additional lightning after the GLM suggested cessation had already occurred. Although these results are encouraging, the procedure must be tested on much larger datasets having different convective modes and different areal coverages to prove its value compared to operational forecasters.

Current affiliation: NOAA/National Weather Service Forecast Office, Goodland, Kansas.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Henry E. Fuelberg, hfuelberg@fsu.edu

Abstract

Thunderstorms in central Florida frequently halt outdoor activities, requiring that one wait some prescribed time after an assumed last flash before safely resuming activities. The goal of this research is to develop a high-skill probabilistic method that can be used in high pressure real-world operations to terminate lightning warnings more quickly while maintaining safety. Probabilistic guidance tools are created for isolated warm season storms in central Florida using dual-polarized radar data at 1-min intervals. The parameters examined are maximum reflectivity and graupel presence at the 0°, −5°, −10°, −15°, and −20°C levels as well as composite reflectivity. Random samples of the radar data are used to train a generalized linear model (GLM) to make a probabilistic prediction whether a given flash is the storm’s last flash. The most statistically significant predictors for lightning cessation are found to be the storm’s maximum reflectivity in the composite and the 0°C levels, along with graupel presence or absence at the −5°, −10°, −15°, and −20°C levels. Statistical verification is used to analyze the performance of the two GLMs at different probability thresholds (95.0%, 97.5%, and 99.0%). When applying the cessation guidance as though storms are occurring in real time, results showed ~99% of the storms produced no additional lightning after the GLM suggested cessation had already occurred. Although these results are encouraging, the procedure must be tested on much larger datasets having different convective modes and different areal coverages to prove its value compared to operational forecasters.

Current affiliation: NOAA/National Weather Service Forecast Office, Goodland, Kansas.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Henry E. Fuelberg, hfuelberg@fsu.edu
Save
  • Agresti, A., Ed., 2013: Introduction to generalized linear models. Categorical Data Analysis, 3rd ed. John Wiley & Sons, 113–162.

  • Boccippio, D. J., S. Heckman, and S. J. Goodman, 2001: A diagnostic analysis of the Kennedy Space Center LDAR network: 1. Data characteristics. J. Geophys. Res., 106, 47694786, https://doi.org/10.1029/2000JD900687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bröcker, J., and L. A. Smith, 2007: Increasing the reliability of reliability diagrams. Wea. Forecasting, 22, 651661, https://doi.org/10.1175/WAF993.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., W. D. Rust, T. J. Schuur, D. R. MacGorman, P. R. Krehbiel, and W. Rison, 2007: Electrical and polarimetric radar observations of a multicell storm in TELEX. Mon. Wea. Rev., 135, 25252544, https://doi.org/10.1175/MWR3421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., W. A. Petersen, and W. K. Deierling, 2009: Radar differential phase signatures of ice orientation for the prediction of lightning initiation and cessation. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 10A.2, https://ams.confex.com/ams/pdfpapers/155707.pdf.

  • Cummins, K. L., and M. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromag. Compat., 51, 499518, https://doi.org/10.1109/TEMC.2009.2023450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davey, M. J., and H. E. Fuelberg, 2017: Using radar-derived parameters to forecast lightning cessation for nonisolated storms. J. Geophys. Res. Atmos., 122, 34353456, https://doi.org/10.1002/2016JD025734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deierling, W., J. Latham, W. A. Petersen, S. Ellis, and H. Christian, 2005: On the relationship of thunderstorm ice hydrometeor characteristics and total lightning measurements. Atmos. Res., 76, 114126, https://doi.org/10.1016/j.atmosres.2004.11.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deierling, W., W. A. Petersen, L. Latham, S. E. Ellis, and H. J. Christian Jr., 2008: The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res., 113, D15210, https://doi.org/10.1029/2007JD009700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowdy, A. J., and G. A. Mills, 2012: Atmospheric and fuel moisture characteristics associated with lightning-attributed fires. J. Appl. Meteor. Climatol., 51, 20252037, https://doi.org/10.1175/JAMC-D-11-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Earth System Research Laboratory, 2017: Rapid Refresh (RAP). NOAA/Earth System Research Laboratory, accessed 7 August 2018, http://rapidrefresh.noaa.gov.

  • Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman and Hall, 436 pp.

    • Crossref
    • Export Citation
  • Fuelberg, H. E., R. J. Walsh, and A. D. Preston, 2014: The extension of lightning flashes from thunderstorms near Cape Canaveral, Florida. J. Geophys. Res. Atmos., 119, 99659979, https://doi.org/10.1002/2014JD022105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinson, M. S., 1997: A study of the characteristics of thunderstorm cessation at the NASA Kennedy Space Center. M.S. thesis, Dept. of Atmospheric Sciences, Texas A&M University, 91 pp., http://hdl.handle.net/1969.1/ETD-TAMU-1997-THESIS-H56.

  • Hodanish, S., D. Sharp, W. Collins, C. Paxton, and R. E. Orville, 1997: A 10-yr monthly lightning climatology of Florida: 1986–95. Wea. Forecasting, 12, 439448, https://doi.org/10.1175/1520-0434(1997)012<0439:AYMLCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holle, R. L., 2016: A summary of recent national-scale lightning fatality studies. Wea. Climate Soc., 8, 3542, https://doi.org/10.1175/WCAS-D-15-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holle, R. L., R. E. Lopez, and C. Zimmermann, 1999: Updated recommendations for lightning safety—1998. Bull. Amer. Meteor. Soc., 80, 20352041, https://doi.org/10.1175/1520-0477(1999)080<2035:URFLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, M. W., 2000: Techniques for forecasting the cessation of lightning at Cape Canaveral Air Station and the Kennedy Space Center. M.S. thesis, Air Force Institute of Technology, 90 pp., https://apps.dtic.mil/dtic/tr/fulltext/u2/a383828.pdf.

  • Huffines, G. R., and R. E. Orville, 1999: Lightning ground flash density and thunderstorm duration in the continental United States: 1989–96. J. Appl. Meteor., 38, 10131019, https://doi.org/10.1175/1520-0450(1999)038<1013:LGFDAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensenius, J. S., 2018: A detailed analysis of lightning deaths in the United States from 2006 through 2013. National Weather Service, 12 pp., https://www.weather.gov/media/iln/LightningDeathAnalysis.pdf.

  • Krehbiel, P. R., 1986: The electrical structure of thunderstorms. The Earth’s Electrical Environment, National Academy Press, 90–113, https://doi.org/10.17226/898.

    • Crossref
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part 1: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laird, N. F., D. A. Kristovich, R. M. Rauber, H. T. Ochs, and L. J. Miller, 1995: The Cape Canaveral sea and river breezes: Kinematic structure and convective initiation. Mon. Wea. Rev., 123, 29422956, https://doi.org/10.1175/1520-0493(1995)123<2942:TCCSAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., 2012: Automating the Analysis of Spatial Grids: A Practical Guide to Data Mining Geospatial Images for Human & Environmental Applications. Geotechnologies and the Environment, Book 6, Springer, 320 pp.

    • Crossref
    • Export Citation
  • Lakshmanan, V., and T. Smith, 2009: Data mining storm attributes from spatial grids. J. Atmos. Oceanic Technol., 26, 23532365, https://doi.org/10.1175/2009JTECHA1257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, K. Hondl, G. J. Stumpf, and A. Witt, 2006: A real-time, three-dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity, and derived products. Wea. Forecasting, 21, 802823, https://doi.org/10.1175/WAF942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., A. Fritz, T. Smith, K. Hondl, and G. Stumpf, 2007a: An automated technique to quality control radar reflectivity data. J. Appl. Meteor. Climatol., 46, 288305, https://doi.org/10.1175/JAM2460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, G. J. Stumpf, and K. Hondl, 2007b: The Warning Decision Support System–Integrated Information (WDSS-II). Wea. Forecasting, 22, 596612, https://doi.org/10.1175/WAF1009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., K. Hondl, and R. Rabin, 2009: An efficient, general-purpose technique for identifying storm cells in geospatial images. J. Atmos. Oceanic Technol., 26, 523537, https://doi.org/10.1175/2008JTECHA1153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T.J., and Coauthors, 2004: The Severe Thunderstorm Electrification and Precipitation Study. Bull. Amer. Meteor. Soc., 85, 11071125, https://doi.org/10.1175/BAMS-85-8-1107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1973: The standard error of time-average estimates of climatic means. J. Appl. Meteor., 12, 10661069, https://doi.org/10.1175/1520-0450(1973)012<1066:TSEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lund, N. R., D. R. MacGorman, T. J. Schuur, M. I. Biggerstaff, and W. D. Rust, 2009: Relationships between lightning location and polarimetric radar signatures in a small mesoscale convective system. Mon. Wea. Rev., 137, 41514170, https://doi.org/10.1175/2009MWR2860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971014, https://doi.org/10.1175/2007BAMS2352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • The MathWorks Inc., 2016: MATLAB version 9.0.0. The MathWorks Inc.

  • Mazzetti, T. O., and H. E. Fuelberg, 2017: An analysis of total lightning flash rates over Florida. J. Geophys. Res. Atmos., 122, 12 81212 826, https://doi.org/10.1002/2017JD027579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melvin, H. A., and H. E. Fuelberg, 2010: Characteristics of decaying storms during lightning cessation at Kennedy Space Center and Cape Canaveral Air Force Station. Preprints, 21st Int. Lightning Detection Conf./Third Int. Lightning Meteorology Conf., Orlando, FL, Vaisala, https://www.vaisala.com/sites/default/files/documents/6.Melvin,%20Fuelberg.pdf.

  • Nag, A., and Coauthors, 2011: Evaluation of U.S. National Lightning Detection Network performance characteristics using rocket-triggered lightning data acquired in 2004–2009. J. Geophys. Res. Atmos., 116, D02123, https://doi.org/10.1029/2010JD014929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nag, A., M. J. Murphy, K. L. Cummins, A. E. Pifer, and J. A. Cramer, 2014: Recent evolution of the U.S. National Lightning Detection Network. 23rd Int. Lightning Detection Conf./Fifth Int. Lightning Meteorology Conf., Tucson, AZ, Vaisala, https://www.researchgate.net/profile/Amitabh_Nag/publication/268334896_Recent_Evolution_of_the_US_National_Lightning_Detection_Network/links/54698eea0cf2397f782d75c1.pdf.

  • National Lightning Safety Institute, 2008: Lightning costs and losses from attributed sources. National Lightning Safety Institute, accessed June 2017, http://lightningsafety.com/nlsi_lls/nlsi_annual_usa_losses.htm.

  • Nelder, J., and R. Wedderburn, 1972: Generalized linear models. J. Roy. Stat. Soc., 135A, 370384, https://doi.org/10.2307/2344614.

  • Nelson, L. A., 2002: Synthesis of 3-dimensional lightning data and weather radar data to determine the distance that naturally occurring lightning travels from thunderstorms. M.S. thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH, 85 pp., http://www.dtic.mil/dtic/tr/fulltext/u2/a404183.pdf.

  • Orville, R. E., 2008: Development of the National Lightning Detection Network. Bull. Amer. Meteor. Soc., 89, 180190, https://doi.org/10.1175/BAMS-89-2-180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poehler, H. A., and C. L. Lennon, 1979: Lightning Detection and Ranging (LDAR) system description and performance objectives. NASA Tech. Rep. 74105, 85 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790025501.pdf.

  • Preston, A. D., and H. E. Fuelberg, 2015: Improving lightning cessation guidance using polarimetric radar data. Wea. Forecasting, 30, 308328, https://doi.org/10.1175/WAF-D-14-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rison, W., P. Krehbiel, R. Thomas, T. Hamlin, and J. Harlin, 2003: Lightning mapping and radar observations of bolts from the blue, paper presented at 12th International Conference on Atmospheric Electricity, Versailles, France.

  • Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601608, https://doi.org/10.1175/2008WAF2222159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeder, W. P., 2010: The four dimensional lightning surveillance system. 21st Int. Lightning Detection Conf./Third Int. Lightning Meteorology Conf., Orlando, FL, Vaisala, http://www.vaisala.com/Vaisala%20Documents/Scientific%20papers/4.Roeder-The%20Four%20Dimensional.pdf.

  • Roeder, W. P., and J. E. Glover, 2005: Preliminary results from Phase-1 of the statistical forecasting of lightning cessation project. First Conf. on the Meteorological Applications of Lightning Data, San Diego, CA, Amer. Meteor. Soc., P1.8, https://ams.confex.com/ams/pdfpapers/85667.pdf.

  • Roeder, W. P., T. M. NcNamara, M. McAleenan, K. A. Winters, L. M. Maier, and L. L. Huddleston, 2017: The 2014 upgrade to the lightning warning areas used by 45th Weather Squadron. 18th Conf. on Aviation, Range, and Aerospace Meteorology, P1298, Seattle, WA, Amer. Meteor. Soc., https://ams.confex.com/ams/97Annual/webprogram/Paper308608.html.

  • Rorig, M. L., S. J. McKay, S. A. Ferguson, and P. Werth, 2007: Model-generated predictions of dry thunderstorm potential. J. Appl. Meteor. Climatol., 46, 605614, https://doi.org/10.1175/JAM2482.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and H. E. Fuelberg, 2010: Pre- and postupgrade distributions of NLDN reported cloud-to-ground lightning characteristics in the contiguous United States. Mon. Wea. Rev., 138, 36233633, https://doi.org/10.1175/2010MWR3283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and H. E. Fuelberg, 2011: Seasonal, regional, and storm-scale variability of cloud-to-ground lightning characteristics in Florida. Mon. Wea. Rev., 139, 18261843, https://doi.org/10.1175/2010MWR3585.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and H. E. Fuelberg, 2013: Documenting storm severity in the Mid-Atlantic region using lightning and radar information. Mon. Wea. Rev., 141, 31863202, https://doi.org/10.1175/MWR-D-12-00287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rust, W. D., and T. C. Marshall, 1996: On abandoning the thunderstorm tripole-charge paradigm. J. Geophys. Res., 101, 23 49923 504, https://doi.org/10.1029/96JD01802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Griangrade, and D. S. Zrnic, 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, https://doi.org/10.1175/BAMS-86-6-809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., W. D. Keith, and R. P. Mitzeva, 1991: The effect of liquid water on thunderstorm charging. J. Geophys. Res., 96, 11 00711 017, https://doi.org/10.1029/91JD00970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, E. V., G. T. Stano, L. D. Carey, and W. A. Petersen, 2013: Radar applications for nowcasting lightning cessation. Sixth Conf. on the Meteorological Applications Lightning Data, Austin, TX, Amer. Meteor. Soc., 5.2, https://ams.confex.com/ams/93Annual/webprogram/Paper220563.html.

  • Schuur, T. J., A. Ryzhkov, P. Heinselman, D. Zrnić, D. Burgess, and K. Scharfenberg, 2003: Observation and classification of echoes with the polarimetric WSR-88D radar. National Severe Storms Laboratory Rep., 46 pp., http://www.cimms.ou.edu/~schuur/jpole/JPOLE_HCA_report_pdf.pdf.

  • Seroka, G. N., R. E. Orville, and C. Schumacher, 2012: Radar nowcasting of total lightning over the Kennedy Space Center. Wea. Forecasting, 27, 189204, https://doi.org/10.1175/WAF-D-11-00035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stano, G. T., H. E. Fuelberg, and W. P. Roeder, 2010: Developing an empirical lightning cessation forecast guidance for the Kennedy Space Center. J. Geophys. Res., 115, D09205, https://doi.org/10.1029/2009JD013034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., W. Deierling, K. Ikeda, and R. G. Bass, 2014: Ground delays from lightning ramp closures and decision uncertainties. Air Traffic Control Quart., 22, 223249, https://doi.org/10.2514/atcq.22.3.223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1973: Electrification of growing ice crystals. J. Atmos. Sci., 30, 12201224, https://doi.org/10.1175/1520-0469(1973)030<1220:EOGIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., S. A. Rutledge, and K. C. Wiens, 2007: Radar and lightning observations of normal and inverted polarity multicellular storms from STEPS. Mon. Wea. Rev., 135, 36823706, https://doi.org/10.1175/2007MWR1954.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

    • Crossref
    • Export Citation
  • Weiss, S. A., W. D. Rust, D. R. MacGorman, E. C. Bruning, and P. R. Krehbiel, 2008: Evolving complex electrical structures of the STEPS 25 June 2000 multicell storm. Mon. Wea. Rev., 136, 741756, https://doi.org/10.1175/2007MWR2023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177, https://doi.org/10.1175/JAS3615.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Williams, E. R., 1989: The tripole structure of thunderstorms. J. Geophys. Res., 94, 13 15113 167, https://doi.org/10.1029/JD094iD11p13151.

  • Wolf, P., 2006: Anticipating the initiation, cessation, and frequency of cloud-to-ground lightning, utilizing WSR-88D reflectivity data. NWA Electron. J. Oper. Meteor., 2007-EJ1, http://nwafiles.nwas.org/ej/pdf/2007-EJ1.pdf.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 444 135 42
PDF Downloads 331 64 5