Long-Duration Freezing Rain Events over North America: Regional Climatology and Thermodynamic Evolution

Christopher D. McCray Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Christopher D. McCray in
Current site
Google Scholar
PubMed
Close
,
Eyad H. Atallah Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Eyad H. Atallah in
Current site
Google Scholar
PubMed
Close
, and
John R. Gyakum Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by John R. Gyakum in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Freezing rain can cause severe impacts, particularly when it persists for many hours. In this paper, we present the climatology of long-duration (6 or more hours) freezing rain events in the United States and Canada from 1979 to 2016. We identify three focus regions from this climatology and examine the archetypal thermodynamic evolution of events in each region using surface and radiosonde observations. Long-duration events occur most frequently in the northeastern United States and southeastern Canada, where freezing rain typically begins as lower-tropospheric warm-air advection develops the warm layer aloft. This warm-air advection and the latent heat of fusion released when rain freezes at the surface erode the cold layer, and freezing rain transitions to rain once the surface temperature reaches 0°C. In the southeastern United States, a larger percentage of events are of long duration than elsewhere in North America. Weak surface cold-air advection and evaporative cooling in the particularly dry onset cold layers there prevent surface temperatures from rising substantially during events. Finally, the south-central United States has a regional maximum in the occurrence of the top 1% of events by duration (18 or more hours), despite the relative rarity of freezing rain there. These events are associated with particularly warm/deep onset warm layers, with persistent low-level cold-air advection maintaining the cold layer. The thermodynamic evolutions we have identified highlight characteristics that are key to supporting persistent freezing rain in each region and may warrant particular attention from forecasters tasked with predicting these events.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher D. McCray, christopher.mccray@mail.mcgill.ca

Abstract

Freezing rain can cause severe impacts, particularly when it persists for many hours. In this paper, we present the climatology of long-duration (6 or more hours) freezing rain events in the United States and Canada from 1979 to 2016. We identify three focus regions from this climatology and examine the archetypal thermodynamic evolution of events in each region using surface and radiosonde observations. Long-duration events occur most frequently in the northeastern United States and southeastern Canada, where freezing rain typically begins as lower-tropospheric warm-air advection develops the warm layer aloft. This warm-air advection and the latent heat of fusion released when rain freezes at the surface erode the cold layer, and freezing rain transitions to rain once the surface temperature reaches 0°C. In the southeastern United States, a larger percentage of events are of long duration than elsewhere in North America. Weak surface cold-air advection and evaporative cooling in the particularly dry onset cold layers there prevent surface temperatures from rising substantially during events. Finally, the south-central United States has a regional maximum in the occurrence of the top 1% of events by duration (18 or more hours), despite the relative rarity of freezing rain there. These events are associated with particularly warm/deep onset warm layers, with persistent low-level cold-air advection maintaining the cold layer. The thermodynamic evolutions we have identified highlight characteristics that are key to supporting persistent freezing rain in each region and may warrant particular attention from forecasters tasked with predicting these events.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher D. McCray, christopher.mccray@mail.mcgill.ca
Save
  • Baldwin, M., R. Treadon, and S. Contorno, 1994: Precipitation type prediction using a decision tree approach with NMCs mesoscale eta model. Preprints, 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 30–31.

  • Bell, G. D., and L. F. Bosart, 1988: Appalachian cold-air damming. Mon. Wea. Rev., 116, 137161, https://doi.org/10.1175/1520-0493(1988)116<0137:ACAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., J. M. Brown, and T. G. Smirnova, 2016: Explicit precipitation-type diagnosis from a model using a mixed-phase bulk cloud–precipitation microphysics parameterization. Wea. Forecasting, 31, 609619, https://doi.org/10.1175/WAF-D-15-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, B. C., 2000: Regional and local influences on freezing drizzle, freezing rain, and ice pellet events. Wea. Forecasting, 15, 485508, https://doi.org/10.1175/1520-0434(2000)015<0485:RALIOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bocchieri, J. R., 1980: The objective use of upper air soundings to specify precipitation type. Mon. Wea. Rev., 108, 596603, https://doi.org/10.1175/1520-0493(1980)108<0596:TOUOUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourgouin, P., 2000: A method to determine precipitation types. Wea. Forecasting, 15, 583592, https://doi.org/10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branick, M. L., 1997: A climatology of significant winter-type weather events in the contiguous United States, 1982–94. Wea. Forecasting, 12, 193207, https://doi.org/10.1175/1520-0434(1997)012<0193:ACOSWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, C. F., 1920: The nature of sleet and how it is formed. Mon. Wea. Rev., 48, 6972, https://doi.org/10.1175/1520-0493(1920)48<69b:TNOSAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrera, M. L., J. R. Gyakum, and C. A. Lin, 2009: Observational study of wind channeling within the St. Lawrence River Valley. J. Appl. Meteor. Climatol., 48, 23412361, https://doi.org/10.1175/2009JAMC2061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castellano, C. M., 2012: Synoptic and mesoscale aspects of ice storms in the northeastern U.S. M.S. thesis, University at Albany, State University of New York, 149 pp.

  • Changnon, S. A., 2003: Characteristics of ice storms in the United States. J. Appl. Meteor., 42, 630639, https://doi.org/10.1175/1520-0450(2003)042<0630:COISIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and C. F. Mass, 1995: The structure and evolution of cold surges east of the Rocky Mountains. Mon. Wea. Rev., 123, 25772610, https://doi.org/10.1175/1520-0493(1995)123<2577:TSAEOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cortinas, J., Jr., 2000: A climatology of freezing rain in the Great Lakes region of North America. Mon. Wea. Rev., 128, 35743588, https://doi.org/10.1175/1520-0493(2001)129<3574:ACOFRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cortinas, J., Jr., B. C. Bernstein, C. C. Robbins, and J. Walter Strapp, 2004: An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–90. Wea. Forecasting, 19, 377390, https://doi.org/10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., 2000: Climatic perspective and impacts of the 1998 northern New York and New England ice storm. Bull. Amer. Meteor. Soc., 81, 237254, https://doi.org/10.1175/1520-0477(2000)081<0237:CPAIOT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, G. S., D. W. Thomson, and R. A. Anthes, 1987: Synoptic and mesoscale aspects of an Appalachian ice storm associated with cold-air damming. Mon. Wea. Rev., 115, 564591, https://doi.org/10.1175/1520-0493(1987)115<0564:SAMAOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gay, D. A., and R. E. Davis, 1993: Freezing rain and sleet climatology of the southeastern USA. Climate Res., 3, 209220, https://doi.org/10.3354/cr003209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., and P. J. Roebber, 2001: The 1998 ice storm—Analysis of a planetary-scale event. Mon. Wea. Rev., 129, 29832997, https://doi.org/10.1175/1520-0493(2001)129<2983:TISAOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and G. A. Norman, 1988: The supercooled warm rain process and the specification of freezing precipitation. Mon. Wea. Rev., 116, 21722182, https://doi.org/10.1175/1520-0493(1988)116<2172:TSWRPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeda, K., M. Steiner, and G. Thompson, 2017: Examination of mixed-phase precipitation forecasts from the High-Resolution Rapid Refresh model using surface observations and sounding data. Wea. Forecasting, 32, 949967, https://doi.org/10.1175/WAF-D-16-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. M. Goss, and M. E. Baldwin, 2000: The melting effect as a factor in precipitation-type forecasting. Wea. Forecasting, 15, 700714, https://doi.org/10.1175/1520-0434(2000)015<0700:TMEAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, D. L., J. T. Schaefer, R. P. McNulty, C. A. Doswell, and R. F. Abbey, 1978: An augmented tornado climatology. Mon. Wea. Rev., 106, 11721183, https://doi.org/10.1175/1520-0493(1978)106<1172:AATC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, D. L., J. T. Schaefer, and C. A. Doswell, 1985: Climatology of nontornadic severe thunderstorm events in the United States. Mon. Wea. Rev., 113, 19972014, https://doi.org/10.1175/1520-0493(1985)113<1997:CONSTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., K. Keeter, L. G. Lee, and M. B. Ek, 2002: Model representation of freezing and melting precipitation: Implications for winter weather forecasting. Wea. Forecasting, 17, 10161033, https://doi.org/10.1175/1520-0434(2003)017<1016:MROFAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, N., D. Ross, and A. Graumann, 1998: Eastern U.S. flooding and ice storm January 1998. Tech. Rep., NOAA/National Climatic Data Center, Asheville, NC, 6 pp.

  • May, R., S. Arms, P. Marsh, E. Bruning, and J. Leeman, 2017: Metpy: A Python package for meteorological data. Accessed 19 March 2019, https://www.unidata.ucar.edu/software/metpy/, https://doi.org/10.5065/D6WW7G29.

    • Crossref
    • Export Citation
  • McKay, G. A., and H. A. Thompson, 1969: Estimating the hazard of ice accretion in Canada from climatological data. J. Appl. Meteor., 8, 927935, https://doi.org/10.1175/1520-0450(1969)008<0927:ETHOIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meisinger, C. L., 1920: The precipitation of sleet and the formation of glaze in the eastern United States, January 20 to 25, 1920, with remarks on forecasting. Mon. Wea. Rev., 48, 7380, https://doi.org/10.1175/1520-0493(1920)48<73b:TPOSAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullens, E. D., L. M. Leslie, and P. J. Lamb, 2016a: Impacts of Gulf of Mexico SST anomalies on Southern Plains freezing precipitation: ARW sensitivity study of the 28–30 January 2010 winter storm. J. Appl. Meteor. Climatol., 55, 119143, https://doi.org/10.1175/JAMC-D-14-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullens, E. D., L. M. Leslie, and P. J. Lamb, 2016b: Synoptic pattern analysis and climatology of ice and snowstorms in the southern Great Plains, 1993–2011. Wea. Forecasting, 31, 11091136, https://doi.org/10.1175/WAF-D-15-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 1998: Automated Surface Observing System (ASOS) User’s Guide. Tech. Rep., National Oceanic and Atmospheric Administration, 61 pp.

  • Rackley, J. A., and J. A. Knox, 2016: A climatology of southern Appalachian cold-air damming. Wea. Forecasting, 31, 419432, https://doi.org/10.1175/WAF-D-15-0049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2005: Improving short-term (0-48 h) cool-season quantitative precipitation forecasting. Bull. Amer. Meteor. Soc., 86, 16191632, https://doi.org/10.1175/BAMS-86-11-1619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramer, J., 1993: An empirical technique for diagnosing precipitation type from model output. Fifth Int. Conf. on Aviation Weather Systems, Vienna, VA, Amer. Meteor. Soc., 227–230.

  • Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, and K. E. Kunkel, 2000: The relative importance of warm rain and melting processes in freezing precipitation events. J. Appl. Meteor., 39, 11851195, https://doi.org/10.1175/1520-0450(2000)039<1185:TRIOWR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, D. Miller, and K. E. Kunkel, 2001: A synoptic weather pattern and sounding-based climatology of freezing precipitation in the United States east of the Rocky Mountains. J. Appl. Meteor., 40, 17241747, https://doi.org/10.1175/1520-0450(2001)040<1724:ASWPAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Razy, A., S. M. Milrad, E. H. Atallah, and J. R. Gyakum, 2012: Synoptic-scale environments conducive to orographic impacts on cold-season surface wind regimes at Montreal, Quebec. J. Appl. Meteor. Climatol., 51, 598616, https://doi.org/10.1175/JAMC-D-11-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., 2016: The uncertainty of precipitation-type observations and its effect on the validation of forecast precipitation type. Wea. Forecasting, 31, 19611971, https://doi.org/10.1175/WAF-D-16-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., K. L. Elmore, A. Ryzhkov, T. Schuur, and J. Krause, 2014: Sources of uncertainty in precipitation-type forecasting. Wea. Forecasting, 29, 936953, https://doi.org/10.1175/WAF-D-14-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ressler, G. M., S. M. Milrad, E. H. Atallah, and J. R. Gyakum, 2012: Synoptic-scale analysis of freezing rain events in Montreal, Quebec, Canada. Wea. Forecasting, 27, 362378, https://doi.org/10.1175/WAF-D-11-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richwien, B. A., 1980: The damming effect of the southern Appalachians. Natl. Wea. Dig., 5 (1), 212.

  • Robbins, C. C., and J. V. Cortinas, 2002: Local and synoptic environments associated with freezing rain in the contiguous United States. Wea. Forecasting, 17, 4765, https://doi.org/10.1175/1520-0434(2002)017<0047:LASEAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., and J. R. Gyakum, 2003: Orographic influences on the mesoscale structure of the 1998 ice storm. Mon. Wea. Rev., 131, 2750, https://doi.org/10.1175/1520-0493(2003)131<0027:OIOTMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryerson, C. C., and A. C. Ramsay, 2007: Quantitative ice accretion information from the Automated Surface Observing System. J. Appl. Meteor. Climatol., 46, 14231437, https://doi.org/10.1175/JAM2535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, K. J., and B. L. Barjenbruch, 2016: Analysis of ice-to-liquid ratios during freezing rain and the development of an ice accumulation model. Wea. Forecasting, 31, 10411060, https://doi.org/10.1175/WAF-D-15-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, K. J., C. Gravelle, J. Gagan, and C. Graves, 2013: Characteristics of major ice storms in the central United States. J. Oper. Meteor., 1, 100113, https://doi.org/10.15191/nwajom.2013.0110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A., N. Lott, and R. Vose, 2011: The integrated surface database: Recent developments and partnerships. Bull. Amer. Meteor. Soc., 92, 704708, https://doi.org/10.1175/2011BAMS3015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., 1985: Precipitation types in winter storms. Pure Appl. Geophys., 123, 597609, https://doi.org/10.1007/BF00877456.

  • Stewart, R. E., and P. King, 1987: Freezing precipitation in winter storms. Mon. Wea. Rev., 115, 12701280, https://doi.org/10.1175/1520-0493(1987)115<1270:FPIWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuart, R., and G. Isaac, 1999: Freezing precipitation in Canada. Atmos.–Ocean, 37, 87102, https://doi.org/10.1080/07055900.1999.9649622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., R. E. Stewart, and W. Henson, 2010: On the dependence of winter precipitation types on temperature, precipitation rate, and associated features. J. Appl. Meteor. Climatol., 49, 14291442, https://doi.org/10.1175/2010JAMC2321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wexler, R., R. J. Reed, and J. Honig, 1954: Atmospheric cooling by melting snow. Bull. Amer. Meteor. Soc., 35, 4851, https://doi.org/10.1175/1520-0477-35.2.48.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and J. C. Doran, 1993: The relationship between overlying synoptic-scale flows and winds within a valley. J. Appl. Meteor., 32, 16691682, https://doi.org/10.1175/1520-0450(1993)032<1669:TRBOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Zerr, R. J., 1997: Freezing rain: An observational and theoretical study. J. Appl. Meteor., 36, 16471661, https://doi.org/10.1175/1520-0450(1997)036<1647:FRAOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zishka, K. M., and P. J. Smith, 1980: The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July, 1950–77. Mon. Wea. Rev., 108, 387401, https://doi.org/10.1175/1520-0493(1980)108<0387:TCOCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2824 979 198
PDF Downloads 2215 478 25