Evaluation of Convection-Permitting Precipitation Forecast Products Using WRF, NMMB, and FV3 for the 2016–17 NOAA Hydrometeorology Testbed Flash Flood and Intense Rainfall Experiments

Nathan Snook Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Nathan Snook in
Current site
Google Scholar
PubMed
Close
,
Fanyou Kong Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Fanyou Kong in
Current site
Google Scholar
PubMed
Close
,
Keith A. Brewster Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Keith A. Brewster in
Current site
Google Scholar
PubMed
Close
,
Ming Xue Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Ming Xue in
Current site
Google Scholar
PubMed
Close
,
Kevin W. Thomas Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Kevin W. Thomas in
Current site
Google Scholar
PubMed
Close
,
Timothy A. Supinie Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Timothy A. Supinie in
Current site
Google Scholar
PubMed
Close
,
Sarah Perfater NOAA/OAR/Office of Weather and Air Quality, Silver Spring, Maryland

Search for other papers by Sarah Perfater in
Current site
Google Scholar
PubMed
Close
, and
Benjamin Albright Systems Research Group, Inc., Colorado Springs, Colorado

Search for other papers by Benjamin Albright in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During the summers of 2016 and 2017, the Center for Analysis and Prediction of Storms (CAPS) ran real-time storm-scale ensemble forecasts (SSEFs) in support of the Hydrometeorology Testbed (HMT) Flash Flood and Intense Rainfall (FFaIR) experiment. These forecasts, using WRF-ARW and Nonhydrostatic Mesoscale Model on the B-grid (NMMB) in 2016, and WRF-ARW and GFDL Finite Volume Cubed-Sphere Dynamical Core (FV3) in 2017, covered the contiguous United States at 3-km horizontal grid spacing, and supported the generation and evaluation of precipitation forecast products, including ensemble probabilistic products. Forecasts of 3-h precipitation accumulation are evaluated. Overall, the SSEF produces skillful 3-h accumulated precipitation forecasts, with ARW members generally outperforming NMMB members and the single FV3 member run in 2017 outperforming ARW members; these differences are significant at some forecast hours. Statistically significant differences exist in the performance, in terms of bias and ETS, among subensembles of members sharing common microphysics and PBL schemes. Year-to-year consistency is higher for PBL subensembles than for microphysical subensembles. Probability-matched (PM) ensemble mean forecasts outperform individual members, while the simple ensemble mean exhibits substantial bias. A newly developed localized probability-matched (LPM) ensemble mean product was produced in 2017; compared to the simple ensemble mean and the conventional PM mean, the LPM mean exhibits improved retention of small-scale structures, evident in both 2D forecast fields and variance spectra. Probabilistic forecasts of precipitation exceeding flash flood guidance (FFG) or thresholds associated with recurrence intervals (RI) ranging from 10 to 100 years show utility in predicting regions of flooding threat, but generally overpredict the occurrence of such events; however, they may still be useful in subjective flash flood risk assessment.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nathan Snook, nsnook@ou.edu

Abstract

During the summers of 2016 and 2017, the Center for Analysis and Prediction of Storms (CAPS) ran real-time storm-scale ensemble forecasts (SSEFs) in support of the Hydrometeorology Testbed (HMT) Flash Flood and Intense Rainfall (FFaIR) experiment. These forecasts, using WRF-ARW and Nonhydrostatic Mesoscale Model on the B-grid (NMMB) in 2016, and WRF-ARW and GFDL Finite Volume Cubed-Sphere Dynamical Core (FV3) in 2017, covered the contiguous United States at 3-km horizontal grid spacing, and supported the generation and evaluation of precipitation forecast products, including ensemble probabilistic products. Forecasts of 3-h precipitation accumulation are evaluated. Overall, the SSEF produces skillful 3-h accumulated precipitation forecasts, with ARW members generally outperforming NMMB members and the single FV3 member run in 2017 outperforming ARW members; these differences are significant at some forecast hours. Statistically significant differences exist in the performance, in terms of bias and ETS, among subensembles of members sharing common microphysics and PBL schemes. Year-to-year consistency is higher for PBL subensembles than for microphysical subensembles. Probability-matched (PM) ensemble mean forecasts outperform individual members, while the simple ensemble mean exhibits substantial bias. A newly developed localized probability-matched (LPM) ensemble mean product was produced in 2017; compared to the simple ensemble mean and the conventional PM mean, the LPM mean exhibits improved retention of small-scale structures, evident in both 2D forecast fields and variance spectra. Probabilistic forecasts of precipitation exceeding flash flood guidance (FFG) or thresholds associated with recurrence intervals (RI) ranging from 10 to 100 years show utility in predicting regions of flooding threat, but generally overpredict the occurrence of such events; however, they may still be useful in subjective flash flood risk assessment.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nathan Snook, nsnook@ou.edu
Save
  • Aligo, E., B. Ferrier, J. Carley, E. Rodgers, M. Pyle, S. J. Weiss, and I. L. Jirak, 2014: Modified microphysics for use in high-resolution NAM forecasts. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 16A.1, https://ams.confex.com/ams/27SLS/webprogram/Paper255732.html.

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewster, K. A., 2003: Phase-correction data assimilation and application to storm-scale numerical weather prediction. Part I: Method description and simulation testing. Mon. Wea. Rev., 131, 480492, https://doi.org/10.1175/1520-0493(2003)131<0480:PCDAAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewster, K. A., and D. R. Stratman, 2016: Tuning an analysis and incremental analysis updating assimilation for an efficient high-resolution forecast system. 20th Conf. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IAOS-AOLS), New Orleans, LA, Amer. Meteor. Soc., 10.6, https://ams.confex.com/ams/96Annual/webprogram/Paper289235.html.

  • Clark, A. J., 2017: Generation of ensemble mean precipitation forecasts from convection-allowing ensembles. Wea. Forecasting, 32, 15691583, https://doi.org/10.1175/WAF-D-16-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, https://doi.org/10.1175/2009WAF2222222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2011: Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble. Mon. Wea. Rev., 139, 14101418, https://doi.org/10.1175/2010MWR3624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, https://doi.org/10.1175/BAMS-D-11-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., J. Gao, P. T. Marsh, T. Smith, J. S. Kain, J. Correia, M. Xue, and F. Kong, 2013: Tornado pathlength forecasts from 2010 to 2011 using ensemble updraft helicity. Wea. Forecasting, 28, 387407, https://doi.org/10.1175/WAF-D-12-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2018: The Community Leveraged Unified Ensemble (CLUE) in the 2016 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Bull. Amer. Meteor. Soc., 99, 14331448, https://doi.org/10.1175/BAMS-D-16-0309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denis, B., J. Cote, and R. Laprise, 2002: Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the discrete cosine transform (DCT). Mon. Wea. Rev., 130, 18121829, https://doi.org/10.1175/1520-0493(2002)130<1812:SDOTDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., G. Dimego, Z. Toth, D. Jovic, B. Zhou, J. Zhu, J. Wang, and H. Juang, 2009: Recent upgrade of NCEP Short-Range Ensemble Forecast (SREF) system. 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 4A.4, http://ams.confex.com/ams/23WAF19NWP/techprogram/paper_153264.htm.

  • Duda, J. D., X. Wang, F. Kong, and M. Xue, 2014: Using varied microphysics to account for uncertainty in warm-season QPF in a convection-allowing ensemble. Mon. Wea. Rev., 142, 21982219, https://doi.org/10.1175/MWR-D-13-00297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 24612480, https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., II, A. McGovern, S. E. Haupt, R. A. Sobash, J. K. Williams, and M. Xue, 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 18191840, https://doi.org/10.1175/WAF-D-17-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., and Coauthors, 2017: Breaking new ground in severe weather prediction: The 2015 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Wea. Forecasting, 32, 15411568, https://doi.org/10.1175/WAF-D-16-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J.-D., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457469, https://doi.org/10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., W. Wang, Y. C. Kwan, S.-Y. Hong, V. Tallapragada, and F. Yang, 2017: Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Wea. Forecasting, 32, 20052017, https://doi.org/10.1175/WAF-D-17-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, L. M., and S.-J. Lin, 2013: A two-way nested global-regional dynamical core on the cubed-sphere grid. Mon. Wea. Rev., 141, 283306, https://doi.org/10.1175/MWR-D-11-00201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, L. M., and S. Lin, 2014: Global-to-regional nested grid climate simulations in the GFDL high resolution atmospheric model. J. Climate, 27, 48904910, https://doi.org/10.1175/JCLI-D-13-00596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. R., and R. S. Schumacher, 2016: Extreme precipitation in models: An evaluation. Wea. Forecasting, 31, 18531879, https://doi.org/10.1175/WAF-D-16-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a Medium-Range Forecast model. Mon. Wea. Rev., 124, 23222339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D Level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675698, https://doi.org/10.1175/MWR3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2005: A unified model approach from meso to global scales. Geophys. Research Abstracts, Vol. 7, 05582, SRef-ID: 1607-7962/gra/EGU05-A-05582, https://www.cosis.net/abstracts/EGU05/05582/EGU05-J-05582.pdf.

  • Johnson, A., X. Wang, F. Kong, and M. Xue, 2013: Object-based evaluation of the impact of horizontal grid spacing on convection-allowing forecasts. Mon. Wea. Rev., 141, 34133425, https://doi.org/10.1175/MWR-D-13-00027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., P. R. Janish, S. J. Weiss, M. E. Baldwin, R. S. Schneider, and H. E. Brooks, 2003: Collaboration between forecasters and research scientists at the NSSL and SPC: The Spring Program. Bull. Amer. Meteor. Soc., 84, 17971806, https://doi.org/10.1175/BAMS-84-12-1797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2010: Assessing advances in the assimilation of radar data within a collaborative forecasting-research environment. Wea. Forecasting, 25, 15101521, https://doi.org/10.1175/2010WAF2222405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors,, 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 12131225, https://doi.org/10.1175/BAMS-D-11-00264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, F., and Coauthors, 2011: Storm-scale ensemble forecasting for the NOAA Hazardous Weather Testbed. Sixth European Conf. on Severe Storms, Palma de Mallorca, Balaric Islands, Spain, ECSS, https://www.essl.org/ECSS/2011/programme/abstracts/171.pdf.

  • Lin, S.-J., 2004: A vertically Lagrangian finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loken, E., A. Clark, M. Xue, and F. Kong, 2017: Impact of horizontal resolution on CAM-derived next-day probabilistic severe weather forecasts. Wea. Forecasting, 32, 14031421, https://doi.org/10.1175/WAF-D-16-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loken, E. D., A. J. Clark, M. Xue, and F. Kong, 2019: Spread and skill in mixed- and single-physics convection-allowing ensembles. Wea. Forecasting, 34, 305330, https://doi.org/10.1175/WAF-D-18-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291303.

  • Mason, I., 2003: Binary events. Forecast Verification—A Practitioner’s Guide in Atmospheric Science, I. T. Jolliffe and D. B. Stephenson, Eds., Wiley, 37–76.

  • McGovern, A., K. L. Elmore, D. J. Gagne II, S. E. Haupt, C. D. Karstens, R. Lagerquist, T. Smith, and J. K. Williams, 2017: Using artificial intelligence to improve real-time decision making for high-impact weather. Bull. Amer. Meteor. Soc., 98, 20732090, https://doi.org/10.1175/BAMS-D-16-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, https://doi.org/10.1175/JAS3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., J. R. Carley, A. J. Clark, L. J. Wicker, P. S. Skinner, A. E. Reinhart, and J. S. Kain, 2018: Inter-model storm-scale comparisons from the 2017 HWT spring forecasting experiment. 25th Conf. on Numerical Weather Prediction, Denver, CO, Amer. Meteor. Soc., 14B.1, https://ams.confex.com/ams/29WAF25NWP/webprogram/Paper345657.html.

  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, J., A. Anderson, and J. Paul, 2007: Spatially-variable, physically-derived, flash flood guidance. 21st Conf. on Hydrology, San Antonio, TX, Amer. Meteor. Soc., 6B.2, https://ams.confex.com/ams/87ANNUAL/techprogram/paper_120022.htm.

  • Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., 145, 33973418, https://doi.org/10.1175/MWR-D-16-0400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2009: Next-day convection-allowing WRF Model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372, https://doi.org/10.1175/2009MWR2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280, https://doi.org/10.1175/2009WAF2222267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, K. R. Smith, and M. L. Weisman, 2014: Characterizing and optimizing precipitation forecasts from a convection-permitting ensemble initialized by a mesoscale ensemble Kalman filter. Wea. Forecasting, 29, 12951318, https://doi.org/10.1175/WAF-D-13-00145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., https://doi.org/10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Surcel, M., I. Zawadzki, and M. K. Yau, 2014: On the filtering properties of ensemble averaging for storm-scale precipitation forecasts. Mon. Wea. Rev., 142, 10931105, https://doi.org/10.1175/MWR-D-13-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sweeney, T., and T. Baumgardner, 1999: Modernized flash flood guidance. Rep. to NWS Hydrology Laboratory, 11 pp., http://www.nws.noaa.gov/oh/hrl/ffg/modflash.htm.

  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Amer. Meteor. Soc., Seattle, WA, 14.2a, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm .

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, S. J., and Coauthors, 2015: Progress over the last decade in the development and use of convection-allowing models in operational severe weather prediction. 27th Conf. on Weather Analysis and Forecasting/23rd Conf. on Numerical Weather Prediction, Chicago, IL, Amer. Meteor. Soc., 7B.4, https://ams.confex.com/ams/27WAF23NWP/webprogram/Paper273802.html.

  • WPC, 2016: 2016 flash flood and intense rainfall experiment final report. NOAA, 62 pp., accessed 14 August 2017, http://www.wpc.ncep.noaa.gov/hmt/2016_FFaIR_Final_Report.pdf.

  • Xiang, B., M. Zhao, X. Jiang, S.-J. Lin, T. Li, X. Fu, and G. Vecchi, 2015: The 3–4 week MJO prediction skill in a GFDL coupled model. J. Climate, 28, 53515364, https://doi.org/10.1175/JCLI-D-15-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., D.-H. Wang, J.-D. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139170, https://doi.org/10.1007/s00703-001-0595-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2007: CAPS realtime storm-scale ensemble and high-resolution forecasts as part of the NOAA Hazardous Weather Testbed 2007 spring experiment. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 3B.1, https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_124587.htm.

  • Xue, M., and Coauthors, 2009: CAPS realtime 4-km multi-model convection-allowing ensemble and 1-km convection-resolving forecasts for the NOAA Hazardous Weather Testbed 2009 Spring Experiment. 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 16A.2, https://ams.confex.com/ams/23WAF19NWP/techprogram/paper_154323.htm.

  • Xue, M., and Coauthors, 2010: CAPS realtime storm-scale ensemble and convection-resolving high-resolution forecasts for the NOAA Hazardous Weather Testbed 2010 spring experiment. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 7B.3.

  • Xue, M., and Coauthors, 2011: Realtime convection-permitting ensemble and convection-resolving deterministic forecasts of CAPS for the Hazardous Weather Testbed 2010 Spring Experiment. 24th Conf. on Weather and Forecasting/20th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 9A.2, https://ams.confex.com/ams/91Annual/webprogram/Paper183227.html.

  • Xue, M., F. Kong, K. W. Thomas, J. Gao, Y. Wang, K. Brewster, and K. K. Droegemeier, 2013: Prediction of convective storms at convection-resolving 1-km resolution over continental United States with radar data assimilation: An example case of 26 May 2008 and precipitation forecasts from spring 2009. Adv. Meteor., 2013, 259052, https://doi.org/10.1155/2013/259052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and Coauthors, 2019: How well does the FV3-based model predict precipitation at a convection-allowing resolution? Results from CAPS forecasts for the 2018 NOAA Hazardous Weather Test bed with different physics combinations. Geophys. Res. Lett., 46, 35233531, https://doi.org/10.1029/2018GL081702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., S. Lin, J. Chen, L. M. Harris, X. Chen, and S. L. Rees, 2019: Toward convective-scale prediction within the next generation global prediction system. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-17-0246.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, K., and Coauthors, 2018: Evaluation of real-time convection-permitting precipitation forecasts in China during the 2013–2014 summer season. J. Geophys. Res. Atmos., 123, 10371064, https://doi.org/10.1002/2017JD027445.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 993 240 18
PDF Downloads 518 130 9