Evaluation of the High-Resolution Rapid Refresh (HRRR) Model Using Near-Surface Meteorological and Flux Observations from Northern Alabama

Temple R. Lee Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma, and NOAA/Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, Oak Ridge, Tennessee

Search for other papers by Temple R. Lee in
Current site
Google Scholar
PubMed
Close
,
Michael Buban Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma, and NOAA/Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, Oak Ridge, Tennessee

Search for other papers by Michael Buban in
Current site
Google Scholar
PubMed
Close
,
David D. Turner NOAA/Earth Systems Research Laboratory, Global Systems Division, Boulder, Colorado

Search for other papers by David D. Turner in
Current site
Google Scholar
PubMed
Close
,
Tilden P. Meyers NOAA/Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, Oak Ridge, Tennessee

Search for other papers by Tilden P. Meyers in
Current site
Google Scholar
PubMed
Close
, and
C. Bruce Baker NOAA/Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, Oak Ridge, Tennessee

Search for other papers by C. Bruce Baker in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The High-Resolution Rapid Refresh (HRRR) model became operational at the National Centers for Environmental Prediction (NCEP) in 2014 but the HRRR’s performance over certain regions of the coterminous United States has not been well studied. In the present study, we evaluated how well version 2 of the HRRR, which became operational at NCEP in August 2016, simulates the near-surface meteorological fields and the surface energy balance at two locations in northern Alabama. We evaluated the 1-, 3-, 6-, 12-, and 18-h HRRR forecasts, as well as the HRRR’s initial conditions (i.e., the 0-h initial fields) using meteorological and flux observations obtained from two 10-m micrometeorological towers installed near Belle Mina and Cullman, Alabama. During the 8-month model evaluation period, from 1 September 2016 to 30 April 2017, we found that the HRRR accurately simulated the observations of near-surface air and dewpoint temperature (R2 > 0.95). When comparing the HRRR output with the observed sensible, latent, and ground heat flux at both sites, we found that the agreement was weaker (R2 ≈ 0.7), and the root-mean-square errors were much larger than those found for the near-surface meteorological variables. These findings help motivate the need for additional work to improve the representation of surface fluxes and their coupling to the atmosphere in future versions of the HRRR to be more physically realistic.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Temple R. Lee, temple.lee@noaa.gov

Abstract

The High-Resolution Rapid Refresh (HRRR) model became operational at the National Centers for Environmental Prediction (NCEP) in 2014 but the HRRR’s performance over certain regions of the coterminous United States has not been well studied. In the present study, we evaluated how well version 2 of the HRRR, which became operational at NCEP in August 2016, simulates the near-surface meteorological fields and the surface energy balance at two locations in northern Alabama. We evaluated the 1-, 3-, 6-, 12-, and 18-h HRRR forecasts, as well as the HRRR’s initial conditions (i.e., the 0-h initial fields) using meteorological and flux observations obtained from two 10-m micrometeorological towers installed near Belle Mina and Cullman, Alabama. During the 8-month model evaluation period, from 1 September 2016 to 30 April 2017, we found that the HRRR accurately simulated the observations of near-surface air and dewpoint temperature (R2 > 0.95). When comparing the HRRR output with the observed sensible, latent, and ground heat flux at both sites, we found that the agreement was weaker (R2 ≈ 0.7), and the root-mean-square errors were much larger than those found for the near-surface meteorological variables. These findings help motivate the need for additional work to improve the representation of surface fluxes and their coupling to the atmosphere in future versions of the HRRR to be more physically realistic.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Temple R. Lee, temple.lee@noaa.gov
Save
  • Angevine, W. M., J. Olson, J. Kenyon, W. I. Gustafson Jr., S. Endo, K. Suselj, and D. D. Turner, 2018: Shallow cumulus in WRF parameterizations evaluated against LASSO large-eddy simulations. Mon. Wea. Rev., 146, 43034322, https://doi.org/10.1175/MWR-D-18-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aubinet, M., and Coauthors, 1999: Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res., 30, 113175, https://doi.org/10.1016/S0065-2504(08)60018-5.

    • Search Google Scholar
    • Export Citation
  • Aubinet, M., C. Feigenwinter, B. Heinesch, Q. Laffineur, D. Papale, M. Reichstein, J. Rinne, and E. V. Gorsel, 2012: Nighttime flux correction. Eddy Covariance, M. Aubinet, T. Vesala, and D. Papale, Eds., Springer, 133–157.

    • Crossref
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blaylock, B., J. Horel, and S. Liston, 2017: Cloud archiving and data mining of high resolution rapid refresh model output. Comput. Geosci., 109, 4350, https://doi.org/10.1016/j.cageo.2017.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., T. J. Wagner, D. D. Turner, and J. Correia Jr., 2017: Quantifying the accuracy and uncertainty of diurnal thermodynamic profiles and convection indices derived from the Atmospheric Emitted Radiance Interferometer. J. Appl. Meteor. Climatol., 56, 27472766, https://doi.org/10.1175/JAMC-D-17-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, M. E., and D. L. Arnold, 1998: Land-surface-atmosphere interactions associated with deep convection in Illinois. Int. J. Climatol., 18, 16371653, https://doi.org/10.1002/(SICI)1097-0088(199812)18:15<1637::AID-JOC336>3.0.CO;2-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W. Y. Y., and W. J. Steenburgh, 2005: Evaluation of surface sensible weather forecasts by the WRF and the Eta models over the western United States. Wea. Forecasting, 20, 812821, https://doi.org/10.1175/WAF885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courault, D., P. Drobinsk, Y. Brunet, P. Lacarrere, and C. Talbot, 2007: Impact of surface heterogeneity on a buoyancy-driven convective boundary layer in light winds. Bound.-Layer Meteor., 124, 383403, https://doi.org/10.1007/s10546-007-9172-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2012: Evidence for enhanced land–atmosphere feedback in a warming climate. J. Hydrometeor., 13, 981995, https://doi.org/10.1175/JHM-D-11-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dumas, E. J., T. R. Lee, M. Buban, and B. Baker, 2016: Small Unmanned Aircraft System (sUAS) measurements during the 2016 Verifications of the Origins of Rotation in Tornadoes Experiment Southeast (VORTEX-SE). NOAA Tech. Memo. OAR ARL-273, 29 pp., https://doi.org/10.7289/V5/TM-OAR-ARL-273.

    • Crossref
    • Export Citation
  • Dumas, E. J., T. R. Lee, M. Buban, and B. Baker, 2017: Small Unmanned Aircraft System (sUAS) measurements during the 2017 Verifications of the Origins of Rotation in Tornadoes Experiment Southeast (VORTEX-SE). NOAA Tech. Memo. OAR ARL-274, 49 pp., https://doi.org/10.7289/V5/TM-OAR-ARL-274.

    • Crossref
    • Export Citation
  • Foken, T., 2008: The energy balance closure problem: An overview. Ecol. Appl., 18, 13511367, https://doi.org/10.1890/06-0922.1.

  • Frank, J. M., W. J. Massman, and B. E. Ewers, 2013: Underestimates of sensible heat flux due to vertical velocity measurement errors in non-orthogonal sonic anemometers. Agric. For. Meteor., 171–172, 7281, https://doi.org/10.1016/j.agrformet.2012.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, L., P. J. Hanson, W. M. Post, D. P. Kaiser, B. Yang, R. Nemani, S. G. Pallardy, and T. Meyers, 2008: The 2007 eastern US spring freeze: Increased cold damage in a warming world? BioScience, 58, 253262, https://doi.org/10.1641/B580311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF Model. J. Appl. Meteor. Climatol., 49, 18311844, https://doi.org/10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by longlived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. D., 1982: Canopy temperature and crop water stress. Advances in Irrigation, D. Hillel, Ed., Elsevier, 43–85.

    • Crossref
    • Export Citation
  • Kalthoff, N., and Coauthors, 2011: The dependence of convection-related parameters on surface and boundary-layer conditions over complex terrain. Quart. J. Roy. Meteor. Soc., 137, 7080, https://doi.org/10.1002/qj.686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004: Atmospheric Emitted Radiance Interferometer. Part II: Instrument performance. J. Atmos. Oceanic Technol., 21, 17771789, https://doi.org/10.1175/JTECH-1663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kochendorfer, J., T. P. Meyers, J. Frank, W. J. Massman, and M. W. Heuer, 2012: How well can we measure the vertical wind speed? Implications for fluxes of energy and mass. Bound.-Layer Meteor., 145, 383398, https://doi.org/10.1007/s10546-012-9738-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T. R., S. F. J. De Wekker, S. Pal, A. E. Andrews, and J. Kofler, 2015: Meteorological controls on the diurnal variability of carbon monoxide mixing ratio at a mountaintop monitoring site in the Appalachian Mountains. Tellus, 67B, 25659, https://doi.org/10.3402/tellusb.v67.25659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T. R., M. S. Buban, M. Palecki, R. Leeper, H. J. Diamond, E. Dumas, T. Meyers, and B. Baker, 2018: Great American eclipse data may fine-tune weather forecasts. Eos, Trans. Amer. Geophys. Union, 99, 1922, https://doi.org/10.1029/2018EO103931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T. R., M. Buban, E. Dumas, and C. B. Baker, 2019: On the use of rotary-wing aircraft to sample near-surface thermodynamic fields: Results from recent field campaigns. Sensors, 19, 10, https://doi.org/10.3390/s19010010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, T. P., 2001: A comparison of summertime water and CO2 fluxes over rangeland for well watered and drought conditions. Agric. For. Meteor., 106, 205214, https://doi.org/10.1016/S0168-1923(00)00213-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, T. P., and D. D. Baldocchi, 2005: Current micrometeorological flux methodologies with applications in agriculture. Micrometeorology in Agricultural Systems, Agronomy Monogr., No. 47, American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 381–396, https://doi.org/10.2134/agronmonogr47.c16.

    • Crossref
    • Export Citation
  • Mulholland, P. J., B. J. Roberts, W. R. Hill, and J. G. Smith, 2009: Stream ecosystem responses to the 2007 spring freeze in the southeastern United States: Unexpected effects of climate change. Global Change Biol., 15, 17671776, https://doi.org/10.1111/j.1365-2486.2009.01864.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1987: Boundary Layer Climates. 2nd ed. Routledge Press, 464 pp.

  • Patil, M. N., R. T. Waghmare, S. Halder, and T. Dharmaraj, 2011: Performance of Noah land surface model over the tropical semi-arid conditions in western India. Atmos. Res., 99, 8596, https://doi.org/10.1016/j.atmosres.2010.09.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151177, https://doi.org/10.1029/1999RG000072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., and Coauthors, 2018: Land–atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 12531272, https://doi.org/10.1175/BAMS-D-17-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sauer, T. J., and R. Horton, 2005: Soil heat flux. Micrometeorology in Agricultural Systems, Agronomy Monogr., No. 47, American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 131–154, https://doi.org/10.2134/agronmonogr47.c7.

    • Crossref
    • Export Citation
  • Segal, M., and R. W. Arritt, 1992: Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients. Bull. Amer. Meteor. Soc., 73, 15931604, https://doi.org/10.1175/1520-0477(1992)073<1593:NMCCBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev., 125, 18701884, https://doi.org/10.1175/1520-0493(1997)125<1870:PODSMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., J. M. Brown, S. G. Benjamin, and J. S. Kenyon, 2016: Modifications to the rapid update cycle land surface model (RUC LSM) available in the weather research and forecasting (WRF) Model. Mon. Wea. Rev., 144, 18511865, https://doi.org/10.1175/MWR-D-15-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. L., S. G. Benjamin, J. M. Brown, S. Weygandt, T. Smirnova, and B. Schwartz, 2008: Convection forecasts from the hourly updated, 3-km High Resolution Rapid Refresh (HRRR) model. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 11.1, https://ams.confex.com/ams/24SLS/techprogram/paper_142055.htm.

  • Sun, X., H. A. Holmes, O. O. Osibanjo, Y. Sun, and C. E. Ivey, 2017: Evaluation of surface fluxes in the WRF Model: Case study for farmland in rolling terrain. Atmosphere, 8, 197, https://doi.org/10.3390/atmos8100197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanner, C. B., and G. W. Thurtell, 1969: Anemoclinometer measurements of Reynolds stress and heat transport in the atmospheric surface layer: Final report. The Laboratory, 164 pp.

  • Turner, D. D., and W. G. Blumberg, 2019: Improvements to the AERIoe thermodynamic profile retrieval algorithm. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens., https://doi.org/10.1109/JSTARS.2018.2874968, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, T., P. Klein, and D. Turner, 2019: A new generation of ground-based mobile platforms for active and passive profiling of the boundary layer. Bull. Amer. Meteor. Soc., 100, 137153, https://doi.org/10.1175/BAMS-D-17-0165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., and Coauthors, 2009: Analysis of regional meteorology and surface ozone during the TexAQS II field program and an evaluation of the NMM-CMAQ and WRF-Chem air quality models. J. Geophys. Res., 114, D00F14, https://doi.org/10.1029/2008JD011675.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2018: A new research approach for observing and characterizing land–atmosphere feedback. Bull. Amer. Meteor. Soc., 99, 16391667, https://doi.org/10.1175/BAMS-D-17-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z., Y. Ma, S. Liu, W. Shi, and J. Wang, 2017: Assessment of the energy balance closure under advective conditions and its impact using remote sensing data. J. Appl. Meteor. Climatol., 56, 127140, https://doi.org/10.1175/JAMC-D-16-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and W.-Z. Zheng, 2004: Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J. Appl. Meteor., 43, 157169, https://doi.org/10.1175/1520-0450(2004)043<0157:DCOSWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2594 653 112
PDF Downloads 1969 253 18