The Extreme Precipitation Index (EPI): A Coupled Dynamic–Thermodynamic Metric to Diagnose Midlatitude Floods Associated with Flow Reversal

Shawn M. Milrad Meteorology Program, Applied Aviation Sciences Department, Embry-Riddle Aeronautical University, Daytona Beach, Florida

Search for other papers by Shawn M. Milrad in
Current site
Google Scholar
PubMed
Close
,
Eyad H. Atallah Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Eyad H. Atallah in
Current site
Google Scholar
PubMed
Close
,
John R. Gyakum Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by John R. Gyakum in
Current site
Google Scholar
PubMed
Close
,
Rachael N. Isphording Oak Ridge National Laboratory, Oak Ridge, Tennessee

Search for other papers by Rachael N. Isphording in
Current site
Google Scholar
PubMed
Close
, and
Jonathon Klepatzki Meteorology Program, Applied Aviation Sciences Department, Embry-Riddle Aeronautical University, Daytona Beach, Florida

Search for other papers by Jonathon Klepatzki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The extreme precipitation index (EPI) is a coupled dynamic–thermodynamic metric that can diagnose extreme precipitation events associated with flow reversal in the mid- to upper troposphere (e.g., Rex and omega blocks, cutoff cyclones, Rossby wave breaks). Recent billion dollar (U.S. dollars) floods across the Northern Hemisphere midlatitudes were associated with flow reversal, as long-duration ascent (dynamics) occurred in the presence of anomalously warm and moist air (thermodynamics). The EPI can detect this potent combination of ingredients and offers advantages over model precipitation forecasts because it relies on mass fields instead of parameterizations. The EPI’s dynamics component incorporates modified versions of two accepted blocking criteria, designed to detect flow reversal during the relatively short duration of extreme precipitation events. The thermodynamic component utilizes standardized anomalies of equivalent potential temperature. Proof-of-concept is demonstrated using four high-impact floods: the 2013 Alberta Flood, Canada’s second costliest natural disaster on record; the 2016 western Europe Flood, which caused the worst flooding in France in a century; the 2000 southern Alpine event responsible for major flooding in Switzerland; and the catastrophic August 2016 Louisiana Flood. EPI frequency maxima are located across the North Atlantic and North Pacific mid- and high latitudes, including near the climatological subtropical jet stream, while secondary maxima are located near the Rockies and Alps. EPI accuracy is briefly assessed using pattern correlation and qualitative associations with an extreme precipitation event climatology. Results show that the EPI may provide potential benefits to flood forecasters, particularly in the 3–10-day range.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shawn M. Milrad, milrads@erau.edu

Publisher’s Note: This article was revised on 23 September 2020 to include Rachael N. Isphording as a coauthor instead of acknowledging her in the Acknowledgments section, as originally published.

Abstract

The extreme precipitation index (EPI) is a coupled dynamic–thermodynamic metric that can diagnose extreme precipitation events associated with flow reversal in the mid- to upper troposphere (e.g., Rex and omega blocks, cutoff cyclones, Rossby wave breaks). Recent billion dollar (U.S. dollars) floods across the Northern Hemisphere midlatitudes were associated with flow reversal, as long-duration ascent (dynamics) occurred in the presence of anomalously warm and moist air (thermodynamics). The EPI can detect this potent combination of ingredients and offers advantages over model precipitation forecasts because it relies on mass fields instead of parameterizations. The EPI’s dynamics component incorporates modified versions of two accepted blocking criteria, designed to detect flow reversal during the relatively short duration of extreme precipitation events. The thermodynamic component utilizes standardized anomalies of equivalent potential temperature. Proof-of-concept is demonstrated using four high-impact floods: the 2013 Alberta Flood, Canada’s second costliest natural disaster on record; the 2016 western Europe Flood, which caused the worst flooding in France in a century; the 2000 southern Alpine event responsible for major flooding in Switzerland; and the catastrophic August 2016 Louisiana Flood. EPI frequency maxima are located across the North Atlantic and North Pacific mid- and high latitudes, including near the climatological subtropical jet stream, while secondary maxima are located near the Rockies and Alps. EPI accuracy is briefly assessed using pattern correlation and qualitative associations with an extreme precipitation event climatology. Results show that the EPI may provide potential benefits to flood forecasters, particularly in the 3–10-day range.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shawn M. Milrad, milrads@erau.edu

Publisher’s Note: This article was revised on 23 September 2020 to include Rachael N. Isphording as a coauthor instead of acknowledging her in the Acknowledgments section, as originally published.

Save
  • Abatzoglou, J. T., 2016: Contribution of cutoff lows to precipitation across the United States. J. Appl. Meteor. Climatol., 55, 893899, https://doi.org/10.1175/JAMC-D-15-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., 2013: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett., 40, 47344739, https://doi.org/10.1002/grl.50880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. M. Polvani, 2015: CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship. J. Climate, 28, 52545271, https://doi.org/10.1175/JCLI-D-14-00589.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev. Climate Change, 6, 277286, https://doi.org/10.1002/wcc.337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barton, Y., P. Giannakaki, H. von Waldow, C. Chevalier, S. Pfahl, and O. Martius, 2016: Clustering of regional-scale extreme precipitation events in southern Switzerland. Mon. Wea. Rev., 144, 347369, https://doi.org/10.1175/MWR-D-15-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and L. F. Bosart, 1989: A 15-year climatology of Northern Hemisphere 500 mb closed cyclone and anticyclone centers. Mon. Wea. Rev., 117, 21422164, https://doi.org/10.1175/1520-0493(1989)117<2142:AYCONH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowley, K. A., J. R. Gyakum, and E. H. Atallah, 2019: A new perspective toward cataloging Northern Hemisphere Rossby wave breaking on the dynamic tropopause. Mon. Wea. Rev., 147, 409431, https://doi.org/10.1175/MWR-D-18-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., and S. Rahmstorf, 2012: A decade of weather extremes. Nat. Climate Change, 2, 491496, https://doi.org/10.1038/nclimate1452.

  • Coumou, D., V. Petoukhov, S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2014: Quasi- resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proc. Natl. Acad. Sci. USA, 111, 12 33112 336, https://doi.org/10.1073/pnas.1412797111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., J. Lehmann, and J. Beckmann, 2015: The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science, 348, 324327, https://doi.org/10.1126/science.1261768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2015: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Climate Change, 5, 560564, https://doi.org/10.1038/nclimate2617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, https://doi.org/10.1088/1748-9326/10/1/014005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and R. E. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85, 955965, https://doi.org/10.1175/BAMS-85-7-955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D., and Coauthors, 2015: The Great Colorado Flood of September 2013. Bull. Amer. Meteor. Soc., 96, 14611487, https://doi.org/10.1175/BAMS-D-13-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., H. Binder, S. Pfahl, N. Piaget, and H. Wernli, 2014: Atmospheric processes triggering the central European floods in June 2013. Nat. Hazards Earth Syst. Sci., 14, 16911702, https://doi.org/10.5194/nhess-14-1691-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., R. W. Knight, and T. R. Karl, 2012: Changes in intense precipitation over the central United States. J. Hydrometeor., 13, 4766, https://doi.org/10.1175/JHM-D-11-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., 2008: The application of Fred Sanders’ teaching to current research on extreme cold-season precipitation events in the Saint Lawrence River Valley region. Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, 241–250, https://doi.org/10.1175/0065-9401-33.55.241.

    • Crossref
    • Export Citation
  • Hoskins, B. J., and T. Woollings, 2015: Persistent extratropical regimes and climate extremes. Curr. Climate Change Rep., 1, 115124, https://doi.org/10.1007/s40641-015-0020-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S., M. DesJardins, and P. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22, 14871503, https://doi.org/10.1175/1520-0450(1983)022<1487:AIBOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., V. Petoukhov, D. Karoly, S. Petri, S. Rahmstorf, and D. Coumou, 2017: Summertime planetary wave resonance in the Northern and Southern Hemispheres. J. Climate, 30, 61336150, https://doi.org/10.1175/JCLI-D-16-0703.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., and Coauthors, 2013: Probable maximum precipitation and climate change. Geophys. Res. Lett., 40, 14021408, https://doi.org/10.1002/grl.50334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and K.-M. Kim, 2012: The 2010 Pakistan flood and Russian heat wave: Teleconnection of hydrometeorological extremes. J. Hydrometeor., 13, 392403, https://doi.org/10.1175/JHM-D-11-016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: Were global numerical weather prediction systems capable of forecasting the extreme Colorado rainfall of 9–16 September 2013? Geophys. Res. Lett., 40, 64056410, https://doi.org/10.1002/2013GL058282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lejenas, H., and H. Okland, 1983: Characteristics of Northern Hemisphere blocking as determined from a long time series of observational data. Tellus, 35A, 350362, https://doi.org/10.1111/j.1600-0870.1983.tb00210.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenggenhager, S., S. Bronnimann, and O. Martius, 2019: On the dynamical coupling between atmospheric blocks and heavy precipitation events: A discussion of the southern Alpine flood in October 2000. Quart. J. Roy. Meteor. Soc., 145, 530545, https://doi.org/10.1002/qj.3449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and H. Davies, 2007: Breaking waves at the tropopause in the wintertime Northern Hemisphere: Climatological analyses of the orientation and the theoretical LC1/2 classification. J. Atmos. Sci., 64, 25762592, https://doi.org/10.1175/JAS3977.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., and Coauthors, 2013: The role of upper-level dynamics and surface processes for the Pakistan flood of July 2010. Quart. J. Roy. Meteor. Soc., 139, 17801797, https://doi.org/10.1002/qj.2082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milrad, S. M., J. R. Gyakum, and E. H. Atallah, 2015: A meteorological analysis of the 2013 Alberta Flood: Antecedent large-scale flow pattern and synoptic-dynamic characteristics. Mon. Wea. Rev., 143, 28172841, https://doi.org/10.1175/MWR-D-14-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milrad, S. M., K. Lombardo, E. H. Atallah, and J. R. Gyakum, 2017: Numerical simulations of the 2013 Alberta Flood: Dynamics, thermodynamics, and the role of orography. Mon. Wea. Rev., 145, 30493072, https://doi.org/10.1175/MWR-D-16-0336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, B. J., K. M. Mahoney, E. M. Sukovich, R. Cifelli, and T. M. Hamill, 2015: Climatology and environmental characteristics of extreme precipitation events in the southeastern United States. Mon. Wea. Rev., 143, 718471, https://doi.org/10.1175/MWR-D-14-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munich, R. E., 2017: Natural disasters: The year in figures. Munich RE, accessed 27 August 2018, https://www.munichre.com/topics-online/en/2017/topics-geo/overview-natural-catastrophe-2016.

  • NCAR, 2018: The NCAR command language, version 6.5.0. UCAR/NCAR/CISL/TDD, Boulder, CO, https://doi.org/10.5065/D6WD3XH5.

    • Crossref
    • Export Citation
  • Overland, J. O., J. F. Francis, R. Hall, E. Hanna, S. Kim, and T. Vihma, 2015: The melting Arctic and midlatitude weather patterns: Are they connected? J. Climate, 28, 79177932, https://doi.org/10.1175/JCLI-D-14-00822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelly, J. L., and B. J. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60, 743760, https://doi.org/10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2013: Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc. Natl. Acad. Sci. USA, 110, 53365341, https://doi.org/10.1073/pnas.1222000110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of cyclones for precipitation extremes. J. Climate, 25, 67706780, https://doi.org/10.1175/JCLI-D-11-00705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., P. A. O’Gorman, and E. M. Fischer, 2017: Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Climate Change, 7, 423427, https://doi.org/10.1038/nclimate3287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philip, S., and Coauthors, 2018: Validation of a rapid attribution of the May/June 2016 flood-inducing precipitation in France to climate change. J. Hydrometeor., 19, 18811898, https://doi.org/10.1175/JHM-D-18-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piaget, N., P. Froidevaux, P. Giannakaki, F. Gierth, O. Martius, M. Riemer, G. Wolf, and C. M. Grams, 2015: Dynamics of a local Alpine flooding event in October 2011: Moisture source and large-scale circulation. Quart. J. Roy. Meteor. Soc., 141, 19221937, https://doi.org/10.1002/qj.2496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., and D. Coumou, 2011: Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA, 108, 17 90517 909, https://doi.org/10.1073/pnas.1101766108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2017: Atmospheric rivers emerge as a global science and applications focus. Bull. Amer. Meteor. Soc., 98, 19691973, https://doi.org/10.1175/BAMS-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1950: Blocking action in the middle troposphere and its effect upon regional climate. Part I: An aerological study of blocking action. Tellus, 2, 196211, https://doi.org/10.1111/j.2153-3490.1950.tb00331.x.

    • Search Google Scholar
    • Export Citation
  • Roberge, A., J. R. Gyakum, and E. H. Atallah, 2009: Analysis of intense poleward water vapor transports into high latitudes of western North America. Wea. Forecasting, 24, 17321747, https://doi.org/10.1175/2009WAF2222198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schamm, K., M. Ziese, K. Raykova, A. Becker, P. Finger, A. Meyer-Christoffer, and U. Schneider, 2015: GPCC full data daily version 1.0 at 1.0°: Daily land-surface precipitation from rain-gauges built on GTS-based and historic data. Deutscher Wetterdienst, accessed 15 June 2018, https://doi.org/10.5676/DWD_GPCC/FD_D_V1_100.

    • Crossref
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2014: Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Climate Change, 4, 704709, https://doi.org/10.1038/nclimate2271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sisson, P. A., and J. R. Gyakum, 2004: Synoptic-scale precursors to significant cold-season precipitation events in Burlington, Vermont. Wea. Forecasting, 19, 841854, https://doi.org/10.1175/1520-0434(2004)019<0841:SPTSCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stucki, P., R. Rickli, S. Brönnimann, O. Martius, H. Wanner, D. Grebner, and J. Luterbacher, 2012: Weather patterns and hydro-climatological precursors of extreme floods in Switzerland since 1868. Meteor. Z., 21, 531550, https://doi.org/10.1127/0941-2948/2012/368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukovich, E. M., F. M. Ralph, F. E. Barthold, D. W. Reynolds, and D. R. Novak, 2014: Extreme quantitative precipitation forecast performance at the Weather Prediction Center from 2001 to 2011. Wea. Forecasting, 29, 894911, https://doi.org/10.1175/WAF-D-13-00061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teufel, B., and Coauthors, 2017: Investigation of the 2013 Alberta Flood from weather and climate perspectives. Climate Dyn., 48, 28812899, https://doi.org/10.1007/s00382-016-3239-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, https://doi.org/10.3402/tellusa.v42i3.11882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y. S., L. Zhao, and R. R. Gillies, 2016: Synoptic and quantitative attributions of the extreme precipitation leading to the August 2016 Louisiana flood. Geophys. Res. Lett., 43, 11 80511 814, https://doi.org/10.1002/2016GL071460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, T. J., D. Takeuchi, M. A. Farukh, and Y. Kitano, 2016: Climatological characteristics of heavy rainfall in Northern Pakistan and atmospheric blocking over western Russia. J. Climate, 29, 77437754, https://doi.org/10.1175/JCLI-D-15-0445.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 622 305 20
PDF Downloads 518 129 17