Validation of Snow Multibands in the Comma Head of an Extratropical Cyclone Using a 40-Member Ensemble

Ryan Connelly School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Ryan Connelly in
Current site
Google Scholar
PubMed
Close
and
Brian A. Colle School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Brian A. Colle in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper investigates the ability of the Weather Research and Forecasting (WRF) Model in simulating multiple small-scale precipitation bands (multibands) within the extratropical cyclone comma head using four winter storm cases from 2014 to 2017. Using the model output, some physical processes are explored to investigate band prediction. A 40-member WRF ensemble was constructed down to 2-km grid spacing over the Northeast United States using different physics, stochastic physics perturbations, different initial/boundary conditions from the first five perturbed members of the Global Forecast System (GFS) Ensemble Reforecast (GEFSR), and a stochastic kinetic energy backscatter scheme (SKEBS). It was found that 2-km grid spacing is adequate to resolve most snowbands. A feature-based verification is applied to hourly WRF reflectivity fields from each ensemble member and the WSR-88D radar reflectivity at 2-km height above sea level. The Method for Object-Based Diagnostic Evaluation (MODE) tool is used for identifying multibands, which are defined as two or more bands that are 5–20 km in width and that also exhibit a >2:1 aspect ratio. The WRF underpredicts the number of multibands and has a slight eastward position bias. There is no significant difference in frontogenetical forcing, vertical stability, moisture, and vertical shear between the banded versus nonbanded members. Underpredicted band members tend to have slightly stronger frontogenesis than observed, which may be consolidating the bands, but overall there is no clear linkage in ambient condition errors and band errors, thus leaving the source for the band underprediction motivation for future work.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Brian A. Colle, brian.colle@stonybrook.edu

Abstract

This paper investigates the ability of the Weather Research and Forecasting (WRF) Model in simulating multiple small-scale precipitation bands (multibands) within the extratropical cyclone comma head using four winter storm cases from 2014 to 2017. Using the model output, some physical processes are explored to investigate band prediction. A 40-member WRF ensemble was constructed down to 2-km grid spacing over the Northeast United States using different physics, stochastic physics perturbations, different initial/boundary conditions from the first five perturbed members of the Global Forecast System (GFS) Ensemble Reforecast (GEFSR), and a stochastic kinetic energy backscatter scheme (SKEBS). It was found that 2-km grid spacing is adequate to resolve most snowbands. A feature-based verification is applied to hourly WRF reflectivity fields from each ensemble member and the WSR-88D radar reflectivity at 2-km height above sea level. The Method for Object-Based Diagnostic Evaluation (MODE) tool is used for identifying multibands, which are defined as two or more bands that are 5–20 km in width and that also exhibit a >2:1 aspect ratio. The WRF underpredicts the number of multibands and has a slight eastward position bias. There is no significant difference in frontogenetical forcing, vertical stability, moisture, and vertical shear between the banded versus nonbanded members. Underpredicted band members tend to have slightly stronger frontogenesis than observed, which may be consolidating the bands, but overall there is no clear linkage in ambient condition errors and band errors, thus leaving the source for the band underprediction motivation for future work.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Brian A. Colle, brian.colle@stonybrook.edu
Save
  • Barnes, L. R., D. M. Schultz, E. C. Gruntfest, M. H. Hayden, and C.C. Benight, 2009: CORRIGENDUM: False alarm rate or false alarm ratio? Wea. Forecasting, 24, 14521454, https://doi.org/10.1175/2009WAF2222300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baxter, M., and P. Schumacher, 2017: Distribution of single-banded snowfall in central U.S. cyclones. Wea. Forecasting, 32, 533554, https://doi.org/10.1175/WAF-D-16-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1950: Über der mechanismus der ausgeibigen Niederschläge. Ber. Dtsch. Wettterdienstes, 12, 225232.

  • Berner, J., S. Ha, J. Hacker, A. Fournier, and C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev., 139, 19721995, https://doi.org/10.1175/2010MWR3595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Correia, P. T. Marsh, and F. Kong, 2013: Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842862, https://doi.org/10.1175/WAF-D-12-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, R. Bullock, and J. Halley-Gotway, 2009: The Method for Object-Based Diagnostic Evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC Spring Program. Wea. Forecasting, 24, 12521267, https://doi.org/10.1175/2009WAF2222241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus, W., and J. Bresch, 2006: Comparison of impacts of WRF dynamic core, physics package, and initial conditions on warm season rainfall forecasts. Mon. Wea. Rev., 134, 26322641, https://doi.org/10.1175/MWR3198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganetis, S. A., 2017: The role of thermodynamic processes in the evolution of single and multibanding within winter storms. Ph.D. thesis, State University of New York at Stony Brook, 259 pp.

  • Ganetis, S. A., B. A. Colle, S. E. Yuter, and N. P. Hoban, 2018: Environmental conditions associated with observed snowband structures within Northeast U.S. winter storms. Mon. Wea. Rev., 146, 36753690, https://doi.org/10.1175/MWR-D-18-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., S. Saslo, and R. Grumm, 2017: Assessing the ensemble predictability of precipitation forecasts for the January 2015 and 2016 East Coast winter storms. Wea. Forecasting, 32, 10571078, https://doi.org/10.1175/WAF-D-16-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau, Y. Zhu, and W. Lapenta, 2013: NOAA's second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, https://doi.org/10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoban, N. P., 2016: Observed characteristics of mesoscale banding in Coastal Northeast U.S. snow storms. M.S. thesis, Dept. of Marine, Earth, Atmospheric Sciences, North Carolina State University, 66 pp.

  • Hoban, N., and Coauthors, 2017: Observed characteristics of mesoscale banding in coastal Northeast U.S. snow storms. 28th Conf. on Weather Analysis and Forecasting/24th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 133, https://ams.confex.com/ams/97Annual/webprogram/Paper308387.html.

  • Hobbs, P. V., and J. D. Locatelli, 1978: Rainbands, precipitation cores and generating cells in a cyclonic storm. J. Atmos. Sci., 35, 230241, https://doi.org/10.1175/1520-0469(1978)035<0230:RPCAGC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jankov, I., W. Gallus, M. Segal, and S. Koch, 2007: Influence of initial conditions on the WRF-ARW model QPF response to physical parameterization changes. Wea. Forecasting, 22, 501519, https://doi.org/10.1175/WAF998.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, M., B. Colle, and J. Tongue, 2007: Evaluation of a mesoscale short-range ensemble forecast system over the Northeast United States. Wea. Forecasting, 22, 3655, https://doi.org/10.1175/WAF973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J., 1998: The structure and evolution of a continental winter cyclone. Part II: Frontal forcing of an extreme snow event. Mon. Wea. Rev., 126, 329348, https://doi.org/10.1175/1520-0493(1998)126<0329:TSAEOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada Level-3 Model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicosia, D., and R. Grumm, 1999: Mesoscale band formation in three major northeastern United States snowstorms. Wea. Forecasting, 14, 346368, https://doi.org/10.1175/1520-0434(1999)014<0346:MBFITM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J., G. Vaughan, and D. Schultz, 2014: Precipitation banding in idealized baroclinic waves. Mon. Wea. Rev., 142, 30813099, https://doi.org/10.1175/MWR-D-13-00343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R., and B. A. Colle, 2012: Diagnosing snowband predictability using a multimodel ensemble system. Wea. Forecasting, 27, 565585, https://doi.org/10.1175/WAF-D-11-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R., L. F. Bosart, D. Keyser, and J. S. Waldstreicher, 2004: An observational study of cold season–banded precipitation in northeast U.S. cyclones. Wea. Forecasting, 19, 9931010, https://doi.org/10.1175/815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R., J. S. Waldstreicher, D. Keyser, and L. F. Bosart, 2006: A forecast strategy for anticipating cold season mesoscale band formation within eastern U.S. cyclones. Wea. Forecasting, 21, 323, https://doi.org/10.1175/WAF907.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and S. E. Yuter, 2008: High-resolution observations and model simulations of the life cycle of an intense mesoscale snowband over the northeastern United States. Mon. Wea. Rev., 136, 14331456, https://doi.org/10.1175/2007MWR2233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and R. McTaggart-Cowan, 2009: The role of moist processes in the formation and evolution of mesoscale snowbands within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 137, 26622686, https://doi.org/10.1175/2009MWR2874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and A. R. Aiyyer, 2010: Evolution of mesoscale precipitation band environments within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 138, 23542374, https://doi.org/10.1175/2010MWR3219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 42 pp.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1936: Contribution to the theory of frontogenesis. Geofys. Publ., 11 (6), 127.

  • Rauber, R. M., and Coauthors, 2017: Finescale structure of a snowstorm over the northeastern United States: A first look at high-resolution HAIPER cloud radar observations. Bull. Amer. Meteor. Soc., 98, 253269, https://doi.org/10.1175/BAMS-D-15-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenow, A. A., D. M. Plummer, R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. Leon, 2014: Vertical velocity and physical structure of generating cells and convection in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15381558, https://doi.org/10.1175/JAS-D-13-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and A. J. Clark, 2014: Evaluation of ensemble configurations for the analysis and prediction of heavy-rain-producing mesoscale convective systems. Mon. Wea. Rev., 142, 41084138, https://doi.org/10.1175/MWR-D-13-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shields, M. T., R. M. Rauber, and M. K. Ramamurthy, 1991: Dynamical forcing and mesoscale organization of precipitation bands in a Midwest winter cyclonic storm. Mon. Wea. Rev., 119, 936964, https://doi.org/10.1175/1520-0493(1991)119<0936:DFAMOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stark, D., S. E. Yuter, and B. A. Colle, 2013: Observed microphysical evolution for two East Coast winter storms and the associated snow bands. Mon. Wea. Rev., 141, 20372057, https://doi.org/10.1175/MWR-D-12-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., 1992: Formation and evolution of frontal rainbands and geostrophic potential vorticity anomalies. J. Atmos. Sci., 49, 629648, https://doi.org/10.1175/1520-0469(1992)049<0629:FAEOFR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 333 111 9
PDF Downloads 234 81 4