Impact of Ground-Based Remote Sensing Boundary Layer Observations on Short-Term Probabilistic Forecasts of a Tornadic Supercell Event

Junjun Hu Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Junjun Hu in
Current site
Google Scholar
PubMed
Close
,
Nusrat Yussouf Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Nusrat Yussouf in
Current site
Google Scholar
PubMed
Close
,
David D. Turner NOAA/OAR/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

Search for other papers by David D. Turner in
Current site
Google Scholar
PubMed
Close
,
Thomas A. Jones Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Thomas A. Jones in
Current site
Google Scholar
PubMed
Close
, and
Xuguang Wang School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Xuguang Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Due to lack of high spatial and temporal resolution boundary layer (BL) observations, the rapid changes in the near-storm environment are not well represented in current convective-scale numerical models. Better representation of the near-storm environment in model initial conditions will likely further improve the forecasts of severe convective weather. This study investigates the impact of assimilating high temporal resolution BL retrievals from two ground-based remote sensing instruments for short-term forecasts of a tornadic supercell event on 13 July 2015 during the Plains Elevated Convection At Night field campaign. The instruments are the Atmospheric Emitted Radiance Interferometer (AERI) that retrieves thermodynamic profiles and the Doppler lidar (DL) that measures horizontal wind profiles. Six sets of convective-scale ensemble data assimilation (DA) experiments are performed: two control experiments that assimilate conventional and WSR-88D radar observations using either relaxation-to-prior-spread (RTPS) or the adaptive inflation (AI) technique and four experiments similar to the control but that assimilate either DL or AERI or both observations in addition to all other observations that are in the control experiments. Results indicate a positive impact of AERI and DL observations in forecasting convective initiation (CI) and early evolution of the supercell storm. The experiment that employs the AI technique to assimilate BL observations in DA enhances the humidity in the near-storm environment and low-level convergence, which in turn helps forecasting CI. The forecast improvement is most pronounced during the first ~3 h. Results also indicate that the AERI observations have a larger impact compared to DL in predicting CI.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Junjun Hu, junjun.hu@noaa.gov

Abstract

Due to lack of high spatial and temporal resolution boundary layer (BL) observations, the rapid changes in the near-storm environment are not well represented in current convective-scale numerical models. Better representation of the near-storm environment in model initial conditions will likely further improve the forecasts of severe convective weather. This study investigates the impact of assimilating high temporal resolution BL retrievals from two ground-based remote sensing instruments for short-term forecasts of a tornadic supercell event on 13 July 2015 during the Plains Elevated Convection At Night field campaign. The instruments are the Atmospheric Emitted Radiance Interferometer (AERI) that retrieves thermodynamic profiles and the Doppler lidar (DL) that measures horizontal wind profiles. Six sets of convective-scale ensemble data assimilation (DA) experiments are performed: two control experiments that assimilate conventional and WSR-88D radar observations using either relaxation-to-prior-spread (RTPS) or the adaptive inflation (AI) technique and four experiments similar to the control but that assimilate either DL or AERI or both observations in addition to all other observations that are in the control experiments. Results indicate a positive impact of AERI and DL observations in forecasting convective initiation (CI) and early evolution of the supercell storm. The experiment that employs the AI technique to assimilate BL observations in DA enhances the humidity in the near-storm environment and low-level convergence, which in turn helps forecasting CI. The forecast improvement is most pronounced during the first ~3 h. Results also indicate that the AERI observations have a larger impact compared to DL in predicting CI.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Junjun Hu, junjun.hu@noaa.gov
Save
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, https://doi.org/10.1111/j.1600-0870.2008.00361.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and N. Collins, 2007: Scalable implementations of ensemble filter algorithms for data assimilation. J. Atmos. Oceanic Technol., 24, 14521463, https://doi.org/10.1175/JTECH2049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berger, H., and M. Forsythe, 2004: Satellite wind superobbing. Met Office Forecasting Research Tech. Rep. 451, 33 pp.

  • Blumberg, W., D. Turner, U. Löhnert, and S. Castleberry, 2015: Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part II: Actual retrieval performance in clear-sky and cloudy conditions. J. Appl. Meteor. Climatol., 54, 23052319, https://doi.org/10.1175/JAMC-D-15-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chai, T., C.-L. Lin, and R. K. Newsom, 2004: Retrieval of microscale flow structures from high-resolution Doppler lidar data using an adjoint model. J. Atmos. Sci., 61, 15001520, https://doi.org/10.1175/1520-0469(2004)061<1500:ROMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Correia Jr., P. T. Marsh, and F. Kong, 2013: Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842862, https://doi.org/10.1175/WAF-D-12-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., S. M. Hitchcock, and K. H. Knopfmeier, 2016: Impact of assimilating preconvective upsonde observations on short-term forecasts of convection observed during MPEX. Mon. Wea. Rev., 144, 43014325, https://doi.org/10.1175/MWR-D-16-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., G. S. Romine, D. D. Turner, and R. D. Torn, 2019: Impacts of targeted AERI and Doppler lidar wind retrievals on short-term forecasts of the initiation and early evolution of thunderstorms. Mon. Wea. Rev., 147, 11491170, https://doi.org/10.1175/MWR-D-18-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 17671785, https://doi.org/10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degelia, S., X. Wang, D. Stensrud, and A. Johnson, 2018: Understanding the impact of radar and in situ observations on the prediction of a nocturnal convection initiation event on 25 June 2013 using an ensemble-based multiscale data assimilation system. Mon. Wea. Rev., 146, 18371859, https://doi.org/10.1175/MWR-D-17-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26, 911927, https://doi.org/10.1175/2008JTECHA1156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005, https://doi.org/10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., and J. R. Mecikalski, 2002: Monitoring high-temporal-resolution convective stability indices using the ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the 3 May 1999 Oklahoma–Kansas tornado outbreak. Wea. Forecasting, 17, 445455, https://doi.org/10.1175/1520-0434(2002)017<0445:MHTRCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. B. Howell, 1998: Meteorological applications of temperature and water vapor retrievals from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 37, 857875, https://doi.org/10.1175/1520-0450(1998)037<0857:MAOTAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T., D. J. Stensrud, and D. C. Dowell, 2007: Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties. Mon. Wea. Rev., 135, 18461868, https://doi.org/10.1175/MWR3391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., and D. J. Stensrud, 2012: Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification. J. Atmos. Sci., 69, 10541065, https://doi.org/10.1175/JAS-D-11-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geer, A. J., and P. Bauer, 2011: Observation errors in all-sky data assimilation. Quart. J. Roy. Meteor. Soc., 137, 20242037, https://doi.org/10.1002/qj.830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection At Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, S.-Y., and C. Snyder, 2014: Influence of surface observations in mesoscale data assimilation using an ensemble Kalman filter. Mon. Wea. Rev., 142, 14891508, https://doi.org/10.1175/MWR-D-13-00108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, S. M., M. C. Coniglio, and K. H. Knopfmeier, 2016: Impact of MPEX upsonde observations on ensemble analyses and forecasts of the 31 May 2013 convective event over Oklahoma. Mon. Wea. Rev., 144, 28892913, https://doi.org/10.1175/MWR-D-15-0344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodyss, D., W. F. Campbell, and J. S. Whitaker, 2016: Observation-dependent posterior inflation for the ensemble Kalman filter. Mon. Wea. Rev., 144, 26672684, https://doi.org/10.1175/MWR-D-15-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoff, R. M., and R. M. Hardesty, Eds., 2012: Thermodynamic Profiling Technologies Workshop Report to the National Science Foundation and the National Weather Service. NCAR Tech. Note NCAR/TN-4881STR, 80 pp.

  • Houtekamer, P., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 44894532, https://doi.org/10.1175/MWR-D-15-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M., S. G. Benjamin, T. T. Ladwig, D. C. Dowell, S. S. Weygandt, C. R. Alexander, and J. S. Whitaker, 2017a: GSI three-dimensional ensemble–variational hybrid data assimilation using a global ensemble for the regional Rapid Refresh model. Mon. Wea. Rev., 145, 42054225, https://doi.org/10.1175/MWR-D-16-0418.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M., G. Ge, H. Shao, D. Stark, K. Newman, C. Zhou, J. Beck, and X. Zhang, 2017b: Gridpoint Statistical Interpolation user’s guide version 3.6. Developmental Testbed Center, 158 pp., https://dtcenter.org/com-GSI/users/docs/users_guide/GSIUserGuide_v3.6.pdf.

  • Johnson, A., X. Wang, J. R. Carley, L. J. Wicker, and C. Karstens, 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. Mon. Wea. Rev., 143, 30873108, https://doi.org/10.1175/MWR-D-14-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, K. R. Haghi, and D. B. Parsons, 2018: Evaluation of forecasts of a convectively generated bore using an intensively observed case study from PECAN. Mon. Wea. Rev., 146, 30973122, https://doi.org/10.1175/MWR-D-18-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and D. J. Stensrud, 2012: Assimilating AIRS temperature and mixing ratio profiles using an ensemble Kalman filter approach for convective-scale forecasts. Wea. Forecasting, 27, 541564, https://doi.org/10.1175/WAF-D-11-00090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikonda, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast system. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297327, https://doi.org/10.1175/WAF-D-15-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., X. Wang, P. Skinner, A. Johnson, and Y. Wang, 2018: Assimilation of GOES-13 imager clear-sky water vapor (6.5 μm) radiances into a Warn-on-Forecast system. Mon. Wea. Rev., 146, 10771107, https://doi.org/10.1175/MWR-D-17-0280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 12131225, https://doi.org/10.1175/BAMS-D-11-00264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., and Coauthors, 2015: LABLE: A multi-institutional, student-led, atmospheric boundary layer experiment. Bull. Amer. Meteor. Soc., 96, 17431764, https://doi.org/10.1175/BAMS-D-13-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP Global Data Assimilation System. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knopfmeier, K. H., and D. J. Stensrud, 2013: Influence of mesonet observations on the accuracy of surface analyses generated by an ensemble Kalman filter. Wea. Forecasting, 28, 815841, https://doi.org/10.1175/WAF-D-12-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, X., and K. G. Hubbard, 2004: Uncertainties of derived dewpoint temperature and relative humidity. J. Appl. Meteor., 43, 821825, https://doi.org/10.1175/2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., M. Hu, H. Shao, D. Stark, G. Ge, K. Newman, and J. Whittaker, 2017: Ensemble Kalman Filter (EnKF) user’s guide version 1.2. Developmental Testbed Center, 86 pp., https://dtcenter.org/EnKF/users/docs/enkf_users_guide/EnKF_UserGuide_v1.2.pdf.

  • Lu, X., X. Wang, Y. Li, M. Tong, and X. Ma, 2017a: GSI-based ensemble-variational hybrid data assimilation for HWRF for hurricane initialization and prediction: Impact of various error covariances for airborne radar observation assimilation. Quart. J. Roy. Meteor. Soc., 143, 223239, https://doi.org/10.1002/qj.2914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X., X. Wang, M. Tong, and V. Tallapragada, 2017b: GSI-based, fully cycled, dual resolution hybrid ensemble–variational data assimilation system for HWRF: System description and experiment with Edouard (2014). Mon. Wea. Rev., 145, 48774898, https://doi.org/10.1175/MWR-D-17-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. National Academies Press, 250 pp, https://doi.org/10.17226/12540.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 2010: When Weather Matters: Science and Services to Meet Critical Societal Needs. National Academies Press, 198 pp, https://doi.org/10.17226/12888.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., and R. M. Banta, 2004a: Assimilating coherent Doppler lidar measurements into a model of the atmospheric boundary layer. Part I: Algorithm development and sensitivity to measurement error. J. Atmos. Oceanic Technol., 21, 13281345, https://doi.org/10.1175/1520-0426(2004)021<1328:ACDLMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., and R. M. Banta, 2004b: Assimilating coherent Doppler lidar measurements into a model of the atmospheric boundary layer. Part II: Sensitivity analyses. J. Atmos. Oceanic Technol., 21, 18091824, https://doi.org/10.1175/JTECH-1676.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., D. Ligon, R. Calhoun, R. Heap, E. Cregan, and M. Princevac, 2005: Retrieval of microscale wind and temperature fields from single-and dual-Doppler lidar data. J. Appl. Meteor., 44, 13241345, https://doi.org/10.1175/JAM2280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., W. A. Brewer, J. M. Wilczak, D. E. Wolfe, S. P. Oncley, and J. K. Lundquist, 2017: Validating precision estimates in horizontal wind measurements from a Doppler lidar. Atmos. Meas. Tech., 10, 1229, https://doi.org/10.5194/amt-10-1229-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochotta, T., C. Gebhardt, D. Saupe, and W. Wergen, 2005: Adaptive thinning of atmospheric observations in data assimilation with vector quantization and filtering methods. Quart. J. Roy. Meteor. Soc., 131, 34273437, https://doi.org/10.1256/qj.05.94.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pagowski, M., and G. A. Grell, 2012: Experiments with the assimilation of fine aerosols using an ensemble Kalman filter. J. Geophys. Res., 117, D21302, https://doi.org/10.1029/2012JD018333.

    • Search Google Scholar
    • Export Citation
  • Pearson, G., F. Davies, and C. Collier, 2009: An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer. J. Atmos. Oceanic Technol., 26, 240250, https://doi.org/10.1175/2008JTECHA1128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polkinghorne, R., and T. Vukicevic, 2011: Data assimilation of cloud-affected radiances in a cloud-resolving model. Mon. Wea. Rev., 139, 755773, https://doi.org/10.1175/2010MWR3360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, C. Snyder, J. L. Anderson, and M. L. Weisman, 2013: Model bias in a continuously cycled assimilation system and its influence on convection-permitting forecasts. Mon. Wea. Rev., 141, 12631284, https://doi.org/10.1175/MWR-D-12-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., 2016: Improving large-domain convection-allowing forecasts with high-resolution analyses and ensemble data assimilation. Mon. Wea. Rev., 144, 17771803, https://doi.org/10.1175/MWR-D-15-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Z. Liu, 2014: Convection-permitting forecasts initialized with continuously cycling limited-area 3DVAR, ensemble Kalman filter, and “hybrid” variational-ensemble data assimilation systems. Mon. Wea. Rev., 142, 716738, https://doi.org/10.1175/MWR-D-13-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280, https://doi.org/10.1175/2009WAF2222267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, R. A. Sobash, K. R. Fossell, and M. L. Weisman, 2015: NCAR’s experimental real-time convection-allowing ensemble prediction system. Wea. Forecasting, 30, 16451654, https://doi.org/10.1175/WAF-D-15-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, H., and Coauthors, 2016: Bridging research to operations transitions: Status and plans of community GSI. Bull. Amer. Meteor. Soc., 97, 14271440, https://doi.org/10.1175/BAMS-D-13-00245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C.,, and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Shun, C. M., and P. W. Chan, 2008: Applications of an infrared Doppler lidar in detection of wind shear. J. Atmos. Oceanic Technol., 25, 637655, https://doi.org/10.1175/2007JTECHA1057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M, and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snook, N., M. Xue, and Y. Jung, 2011: Analysis of a tornadic mesoscale convective vortex based on ensemble Kalman filter assimilation of CASA X-band and WSR-88D radar data. Mon. Wea. Rev., 139, 34463468, https://doi.org/10.1175/MWR-D-10-05053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, https://doi.org/10.1175//2555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., and D. J. Stensrud, 2015: Assimilating surface mesonet observations with the EnKF to improve ensemble forecasts of convection initiation on 29 May 2012. Mon. Wea. Rev., 143, 37003725, https://doi.org/10.1175/MWR-D-14-00126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., and L. J. Wicker, 2015: On the impact of additive noise in storm-scale EnKF experiments. Mon. Wea. Rev., 143, 30673086, https://doi.org/10.1175/MWR-D-14-00323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2013: Progress and challenges with Warn-on-Forecast. Atmos. Res., 123, 216, https://doi.org/10.1016/j.atmosres.2012.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., N. Yussouf, D. C. Dowell, and M. C. Coniglio, 2009: Assimilating surface data into a mesoscale model ensemble: Cold pool analyses from spring 2007. Atmos. Res., 93, 207220, https://doi.org/10.1016/j.atmosres.2008.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 12011221, https://doi.org/10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., Y. Zhu, and R. Wobus, 2004: March 2004 upgrades of the NCEP global ensemble forecast system. NOAA/NCEP/EMC, accessed 28 June 2018, http://www.emc.ncep.noaa.gov/gmb/ens/ens_imp_news.html.

  • Turner, D., and W. G. Blumberg, 2019: Improvements to the AERIoe thermodynamic profile retrieval algorithm. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens., 12, 13391354, https://doi.org/10.1109/JSTARS.2018.2874968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D., and U. Löhnert, 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, https://doi.org/10.1175/JAMC-D-13-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D., W. F. Feltz, and R. A. Ferrare, 2000: Continuous water vapor profiles from operational ground—Based active and passive remote sensors. Bull. Amer. Meteor. Soc., 81, 13011317, https://doi.org/10.1175/1520-0477(2000)081<1301:CWBPFO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D., E. J. Mlawer, and H. E. Revercomb, 2016: Water vapor observations in the ARM program. The Atmospheric Radiation Measurement Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., 13.1–13.18, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0025.1.

    • Crossref
    • Export Citation
  • Wagner, T. J., W. F. Feltz, and S. A. Ackerman, 2008: The temporal evolution of convective indices in storm-producing environments. Wea. Forecasting, 23, 786794, https://doi.org/10.1175/2008WAF2007046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Wang, 2017: Direct assimilation of radar reflectivity without tangent linear and adjoint of the nonlinear observation operator in the GSI-based EnVar system: Methodology and experiment with the 8 May 2003 Oklahoma City tornadic supercell. Mon. Wea. Rev., 145, 14471471, https://doi.org/10.1175/MWR-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, https://doi.org/10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev., 128, 40174030, https://doi.org/10.1175/1520-0493(2000)129<4017:TEOSSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 522, https://doi.org/10.1175/MWR3067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, and Y. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279, https://doi.org/10.1111/j.1600-0870.2007.00273.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., D. J. Stensrud, D. C. Dowell, and N. Yussouf, 2012: Application of a WRF mesoscale data assimilation system to springtime severe weather events 2007–09. Mon. Wea. Rev., 140, 15391557, https://doi.org/10.1175/MWR-D-11-00106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast system. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, https://doi.org/10.1175/MWR-D-11-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP global forecast system. Mon. Wea. Rev., 136, 463482, https://doi.org/10.1175/2007MWR2018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W.-S., D. F. Parrish, E. Rogers, and Y. Lin, 2017: Regional ensemble–variational data assimilation using global ensemble forecasts. Wea. Forecasting, 32, 8396, https://doi.org/10.1175/WAF-D-16-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and W. J. Martin, 2006: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part I: Numerical simulation and general evolution of the dryline and convection. Mon. Wea. Rev., 134, 149171, https://doi.org/10.1175/MWR3071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., E. R. Mansell, L. J. Wicker, D. M. Wheatley, and D. J. Stensrud, 2013: The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell storm using single-and double-moment microphysics schemes. Mon. Wea. Rev., 141, 33883412, https://doi.org/10.1175/MWR-D-12-00237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., D. C. Dowell, L. J. Wicker, K. H. Knopfmeier, and D. M. Wheatley, 2015: Storm-scale data assimilation and ensemble forecasts for the 27 April 2011 severe weather outbreak in Alabama. Mon. Wea. Rev., 143, 30443066, https://doi.org/10.1175/MWR-D-14-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., J. S. Kain, and A. J. Clark, 2016: Short-term probabilistic forecasts of the 31 May 2013 Oklahoma tornado and flash flood event using a continuous-update-cycle storm-scale ensemble system. Wea. Forecasting, 31, 957983, https://doi.org/10.1175/WAF-D-15-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Z. Meng, and A. Aksoy, 2006: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134, 722736, https://doi.org/10.1175/MWR3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., Y. Zhu, D. Hou, and D. Kleist, 2016: A comparison of perturbations from an ensemble transform and an ensemble Kalman filter for the NCEP Global Ensemble Forecast System. Wea. Forecasting, 31, 20572074, https://doi.org/10.1175/WAF-D-16-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 688 273 31
PDF Downloads 503 129 18