Long-Lead Statistical Forecasts of the Indian Summer Monsoon Rainfall Based on Causal Precursors

G. Di Capua Potsdam Institute for Climate Impact Research, Potsdam, Germany
Institute for Environmental Studies, VU University of Amsterdam, Amsterdam, Netherlands

Search for other papers by G. Di Capua in
Current site
Google Scholar
PubMed
Close
,
M. Kretschmer Potsdam Institute for Climate Impact Research, Potsdam, Germany

Search for other papers by M. Kretschmer in
Current site
Google Scholar
PubMed
Close
,
J. Runge Institute of Data Science, German Aerospace Center, Jena, Germany

Search for other papers by J. Runge in
Current site
Google Scholar
PubMed
Close
,
A. Alessandri Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by A. Alessandri in
Current site
Google Scholar
PubMed
Close
,
R. V. Donner Potsdam Institute for Climate Impact Research, Potsdam, Germany
Magdeburg-Stendal University of Applied Sciences, Magdeburg, Germany

Search for other papers by R. V. Donner in
Current site
Google Scholar
PubMed
Close
,
B. van den Hurk Institute for Environmental Studies, VU University of Amsterdam, Amsterdam, Netherlands
Deltares, Delft, Netherlands

Search for other papers by B. van den Hurk in
Current site
Google Scholar
PubMed
Close
,
R. Vellore Indian Institute for Tropical Meteorology, Pune, India

Search for other papers by R. Vellore in
Current site
Google Scholar
PubMed
Close
,
R. Krishnan Indian Institute for Tropical Meteorology, Pune, India

Search for other papers by R. Krishnan in
Current site
Google Scholar
PubMed
Close
, and
D. Coumou Potsdam Institute for Climate Impact Research, Potsdam, Germany
Institute for Environmental Studies, VU University of Amsterdam, Amsterdam, Netherlands

Search for other papers by D. Coumou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Skillful forecasts of the Indian summer monsoon rainfall (ISMR) at long lead times (4–5 months in advance) pose great challenges due to strong internal variability of the monsoon system and nonstationarity of climatic drivers. Here, we use an advanced causal discovery algorithm coupled with a response-guided detection step to detect low-frequency, remote processes that provide sources of predictability for the ISMR. The algorithm identifies causal precursors without any a priori assumptions, apart from the selected variables and lead times. Using these causal precursors, a statistical hindcast model is formulated to predict seasonal ISMR that yields valuable skill with correlation coefficient (CC) ~0.8 at a 4-month lead time. The causal precursors identified are generally in agreement with statistical predictors conventionally used by the India Meteorological Department (IMD); however, our methodology provides precursors that are automatically updated, providing emerging new patterns. Analyzing ENSO-positive and ENSO-negative years separately helps to identify the different mechanisms at play during different years and may help to understand the strong nonstationarity of ISMR precursors over time. We construct operational forecasts for both shorter (2-month) and longer (4-month) lead times and show significant skill over the 1981–2004 period (CC ~0.4) for both lead times, comparable with that of IMD predictions (CC ~0.3). Our method is objective and automatized and can be trained for specific regions and time scales that are of interest to stakeholders, providing the potential to improve seasonal ISMR forecasts.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WAF-D-19-0002.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Giorgia Di Capua, dicapua@pik-potsdam.de

Abstract

Skillful forecasts of the Indian summer monsoon rainfall (ISMR) at long lead times (4–5 months in advance) pose great challenges due to strong internal variability of the monsoon system and nonstationarity of climatic drivers. Here, we use an advanced causal discovery algorithm coupled with a response-guided detection step to detect low-frequency, remote processes that provide sources of predictability for the ISMR. The algorithm identifies causal precursors without any a priori assumptions, apart from the selected variables and lead times. Using these causal precursors, a statistical hindcast model is formulated to predict seasonal ISMR that yields valuable skill with correlation coefficient (CC) ~0.8 at a 4-month lead time. The causal precursors identified are generally in agreement with statistical predictors conventionally used by the India Meteorological Department (IMD); however, our methodology provides precursors that are automatically updated, providing emerging new patterns. Analyzing ENSO-positive and ENSO-negative years separately helps to identify the different mechanisms at play during different years and may help to understand the strong nonstationarity of ISMR precursors over time. We construct operational forecasts for both shorter (2-month) and longer (4-month) lead times and show significant skill over the 1981–2004 period (CC ~0.4) for both lead times, comparable with that of IMD predictions (CC ~0.3). Our method is objective and automatized and can be trained for specific regions and time scales that are of interest to stakeholders, providing the potential to improve seasonal ISMR forecasts.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WAF-D-19-0002.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Giorgia Di Capua, dicapua@pik-potsdam.de

Supplementary Materials

    • Supplemental Materials (PDF 1.82 MB)
Save
  • Bamzai, A. S., and J. Shukla, 1999: Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: An observational study. J. Climate, 12, 31173132, https://doi.org/10.1175/1520-0442(1999)012<3117:RBESCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bello, G. A., M. Angus, N. Pedemane, J. K. Harlalka, F. H. M. Semazzi, V. Kumar, and N. F. Samatova, 2015: Response-guided community detection: Application to climate index discovery. Machine Learning and Knowledge Discovery in Databases, A. Appice et al., Eds., Springer, 736–751.

    • Crossref
    • Export Citation
  • Bhanu Kumar, O. S. R. U., 1988: Eurasian snow cover and seasonal forecast of Indian summer monsoon rainfall. Hydrol. Sci. J., 33, 515525, https://doi.org/10.1080/02626668809491278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., 2007: Impact of El Niño–Southern on European climate. Rev. Geophys., 45, https://doi.org/10.1029/2006RG000199.

  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Cherchi, A., and A. Navarra, 2013: Influence of ENSO and of the Indian Ocean Dipole on the Indian summer monsoon variability. Climate Dyn., 41, 81103, https://doi.org/10.1007/s00382-012-1602-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dash, S. K., G. P. Singh, A. D. Vernekar, and M. S. Shekhar, 2004: A study on the number of snow days over Eurasia, Indian rainfall and seasonal circulations. Meteor. Atmos. Phys., 86, 113, https://doi.org/10.1007/s00703-003-0016-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dash, S. K., G. P. Singh, M. S. Shekhar, and A. D. Vernekar, 2005: Response of the Indian summer monsoon circulation and rainfall to seasonal snow depth anomaly over Eurasia. Climate Dyn., 24, 110, https://doi.org/10.1007/s00382-004-0448-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dash, S. K., P. Parth Sathi, and S. K. Panda, 2006: A study on the effect of Eurasian snow on the summer monsoon circulation and rainfall using a spectral GCM. Int. J. Climatol., 26, 10171025, https://doi.org/10.1002/joc.1299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., and J. Shukla, 2002: Linear prediction of Indian monsoon rainfall. J. Climate, 15, 36453658, https://doi.org/10.1175/1520-0442(2002)015<3645:LPOIMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., and J. Shukla, 2009: Artificial skill due to predictor screening. J. Climate, 22, 331345, https://doi.org/10.1175/2008JCLI2414.1.

  • Dugam, S. S., S. B. Kakade, and R. K. Verma, 1997: Interannual and long-term variability in the North Atlantic Oscillation and Indian Summer monsoon rainfall. Theor. Appl. Climatol., 58, 2129, https://doi.org/10.1007/BF00867429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J., 2004: A stratified diagnosis of the Indian monsoon–Eurasian snow cover relationship. J. Climate, 17, 11101122, https://doi.org/10.1175/1520-0442(2004)017<1110:ASDOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferranti, L., and F. Molteni, 1999: Ensemble simulations of Eurasian snow-depth anomalies and their influence on the summer Asian monsoon. Quart. J. Roy. Meteor. Soc., 125, 25972610, https://doi.org/10.1002/qj.49712555913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., and K. Rupa Kumar, 2006: The Asian Monsoon – Agriculture and economy. The Asian Monsoon, B. Wang, Ed., Springer, 651–683.

    • Crossref
    • Export Citation
  • Gadgil, S., M. Rajeevan, and R. Nanjundiah, 2005: Monsoon prediction - Why yet another failure? Curr. Sci., 88, 13891400, https://www.jstor.org/stable/24110705.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and P. K. Xavier, 2005: Dynamics of “internal” interannual variability of the Indian summer monsoon in a GCM. J. Geophys. Res., 110, D24104, https://doi.org/10.1029/2005JD006042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., M. S. Madhusoodanan, C. P. Neema, and D. Sengupta, 2006: A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys. Res. Lett., 33, L02706, https://doi.org/10.1029/2005GL024803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahn, D. G., and J. Shukla, 1976: An apparent relationship between Eurasian snow cover and Indian monsoon rainfall. J. Atmos. Sci., 33, 24612462, https://doi.org/10.1175/1520-0469(1976)033<2461:AARBES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., and L. Greischar, 1993: Changing predictability of Indian monsoon rainfall anomalies? Proc. Indian Acad. Sci., Earth Planet. Sci., 102, 3547, https://doi.org/10.1007/BF02839181.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jain, S., A. A. Scaife, and A. K. Mitra, 2019: Skill of Indian summer monsoon rainfall prediction in multiple seasonal prediction systems. Climate Dyn., 52, 52915301, https://doi.org/10.1007/s00382-018-4449-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kretschmer, M., D. Coumou, J. F. Donges, and J. Runge, 2016: Using causal effect networks to analyze different Arctic drivers of midlatitude winter circulation. J. Climate, 29, 40694081, https://doi.org/10.1175/JCLI-D-15-0654.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kretschmer, M., J. Runge, and D. Coumou, 2017: Early prediction of extreme stratospheric polar vortex states based on causal precursors. Geophys. Res. Lett., 44, 85928600, https://doi.org/10.1002/2017GL074696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., A. Kulkarni, and S. S. Sabade, 2001: El Niño–Southern Oscillation, Eurasian snow cover and the Indian monsoon rainfall. Indian Natl. Sci. Acad., 67, 361368.

    • Search Google Scholar
    • Export Citation
  • Krishna Kumar, K., B. Rajagopalan, and M. Cane, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 21562159, https://doi.org/10.1126/science.284.5423.2156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and B. N. Goswami, 2000: Indian monsoon-ENSO relationship on interdecadal timescale. J. Climate, 13, 579595, https://doi.org/10.1175/1520-0442(2000)013<0579:IMEROI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., C. Venkatesan, and R. N. Keshavamurty, 1998: Dynamics of upper tropospheric stationary wave anomalies induced by ENSO during the northern summer: A GCM study. Proc. Indian Acad. Sci., Earth Planet. Sci., 107, 6590, https://doi.org/10.1007/BF02842261.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., and M. K. Joshi, 2017: Influence of tropical South Atlantic sea-surface temperatures on the Indian summer monsoon in CMIP5 models. Quart. J. Roy. Meteor. Soc., 143, 13511363, https://doi.org/10.1002/qj.3009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., 2012: Statistical models for long-range forecasting of southwest monsoon rainfall over India using step wise regression and neural network. Atmos. Climate Sci., 2, 322336, https://doi.org/10.4236/acs.2012.23029.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and H. Lim, 1984: On the dynamics of equatorial forcing of climate teleconnections. J. Atmos. Sci., 41, 161176, https://doi.org/10.1175/1520-0469(1984)041<0161:OTDOEF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mamgain, A., S. K. Dash, and P. P. Sarthi, 2010: Characteristics of Eurasian snow depth with respect to Indian summer monsoon rainfall. Meteor. Atmos. Phys., 110, 7183, https://doi.org/10.1007/s00703-010-0100-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monerie, P. A., J. Robson, B. Dong, and N. Dunstone, 2017: A role of the Atlantic Ocean in predicting summer surface air temperature over North East Asia? Climate Dyn., 51, 473491, https://doi.org/10.1007/s00382-017-3935-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mujumdar, M., V. Kumar, and R. Krishnan, 2007: The Indian summer monsoon drought of 2002 and its linkage with tropical convective activity over northwest Pacific. Climate Dyn., 28, 743758, https://doi.org/10.1007/s00382-006-0208-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and H. Douville, 2010: Influence of the Eurasian snow cover on the Indian summer monsoon variability in observed climatologies and CMIP3 simulations. Climate Dyn., 34, 643660, https://doi.org/10.1007/s00382-009-0565-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., 2001: Prediction of Indian summer monsoon: Status, problems and prospects. Curr. Sci., 81, 14511457.

  • Rajeevan, M., 2002: Winter surface pressure anomalies over Eurasia and Indian summer monsoon. Geophys. Res. Lett., 29, 1454, https://doi.org/10.1029/2001GL014363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., D. S. Pai, and V. Thapliyal, 1998: Spatial and temporal relationships between global land surface air temperature anomalies and Indian summer monsoon rainfall. Meteor. Atmos. Phys., 66, 157171, https://doi.org/10.1007/BF01026631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., D. S. Pai, and V. Thapliyal, 2002: Predictive relationships between Indian Ocean sea surface temperatures and Indian summer monsoon rainfall. Mausam, 53, 337348.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., D. S. Pai, S. K. Dikshit, and R. R. Kelkar, 2004: IMD’s new operational models for long-range forecast of southwest monsoon rainfall over India and their verification for 2003. Curr. Sci., 86, 422431.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., D. S. Pai, and R. A. Kumar, 2005: New statistical models for long range forecasting of south west monsoon rainfall over India. NCC Research Rep. 1, 51 pp., http://www.imdpune.gov.in/Clim_Pred_LRF_New/Reports/NCCResearchReports/research_report_1.pdf.

  • Rajeevan, M., D. S. Pai, R. Anil Kumar, and B. Lal, 2007: New statistical models for long-range forecasting of southwest monsoon rainfall over India. Climate Dyn., 28, 813828, https://doi.org/10.1007/s00382-006-0197-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., J. Bhate, and A. K. Jaswal, 2008: Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett., 35, L18707, https://doi.org/10.1029/2008GL035143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., C. R. Mechoso, and A. W. Robertson, 2008: What determines the position and intensity of the South Atlantic anticyclone in austral winter?—An AGCM study. J. Climate, 21, 214229, https://doi.org/10.1175/2007JCLI1802.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., M. Mu, K. Vinnikov, and D. Robinson, 2003: Land surface conditions over Eurasia and Indian summer monsoon rainfall. J. Geophys. Res., 108, 4131, https://doi.org/10.1029/2002JD002286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Runge, J., 2018: Causal network reconstruction from time-series : From theoretical assumptions to practical estimation. Chaos, 28, 075310, https://doi.org/10.1063/1.5025050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Runge, J., J. Heitzig, N. Marwan, and J. Kurths, 2012: Quantifying causal coupling strength: A lag-specific measure for multivariate time-series related to transfer entropy. Phys. Rev. E, 86, 061121, https://doi.org/10.1103/PhysRevE.86.061121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Runge, J., V. Petoukhov, and J. Kurths, 2014: Quantifying the strength and delay of climatic interactions: The ambiguities of cross correlation and a novel measure based on graphical models. J. Climate, 27, 720739, https://doi.org/10.1175/JCLI-D-13-00159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Runge, J., and Coauthors, 2015a: Identifying causal gateways and mediators in complex spatio-temporal systems. Nat. Commun., 6, 9502, https://doi.org/10.1038/ncomms9502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Runge, J., R. V. Donner, and J. Kurths, 2015b: Optimal model-free prediction from multivariate time-series. Phys. Rev. E, 91, 052909, https://doi.org/10.1103/PhysRevE.91.052909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, K., F. Sanders, and J. Shukla, 1981: Westward propagating predecessors of monsoon depressions. Mon. Wea. Rev., 109, 330343, https://doi.org/10.1175/1520-0493(1981)109<0330:WPPOMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, M., P. Mitra, and R. S. Nanjundiah, 2016: Autoencoder-based identification of predictors of Indian monsoon. Meteor. Atmos. Phys., 128, 613628, https://doi.org/10.1007/s00703-016-0431-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahai, A. K., M. K. Soman, and V. Satyan, 2000: All India summer monsoon rainfall prediction using an artificial neural network. Climate Dyn., 16, 291302, https://doi.org/10.1007/s003820050328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, M., 2001: Climate memory of snow mass as soil moisture over central Eurasia. J. Geophys. Res., 106, 33 39333 403, https://doi.org/10.1029/2001JD000525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., and D. A. Mooley, 1987: Empirical prediction of the summer monsoon rainfall over India. Mon. Wea. Rev., 115, 695703, https://doi.org/10.1175/1520-0493(1987)115<0695:EPOTSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, R. P., K. C. Tripathi, A. C. Pandey, and I. M. L. Das, 2011: Prediction of Indian summer monsoon rainfall using Niño indices: A neural network approach. Atmos. Res., 102, 99109, https://doi.org/10.1016/j.atmosres.2011.06.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., 1980: Some aspects of the large-scale fluctuations of summer monsoon rainfall over India in relation to fluctuations in the planetary and regional scale circulations. Proc. Indian Acad. Sci., Earth Planet. Sci., 89, 179195, https://doi.org/10.1007/BF02913749.

    • Search Google Scholar
    • Export Citation
  • Singh, P., 2018: Indian summer monsoon rainfall (ISMR) forecasting using time-series data: A fuzzy-entropy-neuro based expert system. Geosci. Front., 9, 12431257, https://doi.org/10.1016/j.gsf.2017.07.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, P., and B. Borah, 2013: Indian summer monsoon rainfall prediction using artificial neural network. Stochastic Environ. Res. Risk Assess., 27, 15851599, https://doi.org/10.1007/s00477-013-0695-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spirtes, P., C. Glymour, and R. Scheines, 2000: Causation, Prediction, and Search. MIT Press, 568 pp.

    • Crossref
    • Export Citation
  • Srivastava, A. K., M. Rajeevan, and R. Kulkarni, 2002: Teleconnection of OLR and SST anomalies over Atlantic Ocean with Indian summer monsoon. Geophys. Res. Lett., 29, 1284, https://doi.org/10.1029/2001gl013837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., K. H. Cook, and E. K. Vizy, 2017: The South Atlantic subtropical high: Climatology and interannual variability. J. Climate, 30, 32793296, https://doi.org/10.1175/JCLI-D-16-0705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, P., P. Delecluse, S. Labattu, and L. Terray, 2003: Sea surface temperature associations with the late Indian summer monsoon. Climate Dyn., 21, 593618, https://doi.org/10.1007/s00382-003-0354-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thapliyal, V., and M. Rajeevan, 2003: Updated operational models for long-range forecasts of Indian summer monsoon rainfall. Mausam, 54, 495504.

    • Search Google Scholar
    • Export Citation
  • Turner, A. G., and J. M. Slingo, 2011: Using idealized snow forcing to test teleconnections with the Indian summer monsoon in the Hadley Centre GCM. Climate Dyn., 36, 17171735, https://doi.org/10.1007/s00382-010-0805-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varikoden, H., and C. A. Babu, 2015: Indian summer monsoon rainfall and its relation with SST in the equatorial Atlantic and Pacific Oceans. Int. J. Climatol., 35, 11921200, https://doi.org/10.1002/joc.4056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verma, R. K., K. Subramaniam, and S. S. Dugam, 1985: Interannual and long-term variability of the summer monsoon and its possible link with northern hemispheric surface air temperature. Proc. Indian Acad. Sci., Earth Planet. Sci., 94, 187198, https://doi.org/10.1007/BF02839197.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, X. Fu, I. S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, https://doi.org/10.1029/2005GL023769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., F. Kucharski, R. Barimalala, and A. Bracco, 2009: Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans: A review of recent findings. Meteor. Z., 18, 445454, https://doi.org/10.1127/0941-2948/2009/0394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., and T. N. Palmer, 2014: On the reliability of seasonal climate forecasts. J. Roy. Soc. Interface, 11, 20131162, https://doi.org/10.1098/rsif.2013.1162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 648 pp.

  • Willink, D., V. Khan, and R. V. Donner, 2017: Improved one-month lead time forecasting of the SPI over Russia with pressure covariates based on the SL–AV model. Quart. J. Roy. Meteor. Soc., 143, 26362649, https://doi.org/10.1002/qj.3114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yadav, R. K., G. Srinivas, and J. S. Chowdary, 2018: Atlantic Niño modulation of the Indian summer monsoon through Asian jet. npj Climate Atmos. Sci., 1, 23, https://doi.org/10.1038/s41612-018-0029-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1231 336 26
PDF Downloads 987 279 28