Introducing Lightning Threat Messaging Using the GOES-16 Day Cloud Phase Distinction RGB Composite

Cynthia B. Elsenheimer NOAA/NWS Southern Region Headquarters, Fort Worth, Texas

Search for other papers by Cynthia B. Elsenheimer in
Current site
Google Scholar
PubMed
Close
and
Chad M. Gravelle Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Chad M. Gravelle in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In 2001, the National Weather Service (NWS) began a Lightning Safety Awareness Campaign to reduce lightning-related fatalities in the United States. Although fatalities have decreased 41% since the campaign began, lightning still poses a significant threat to public safety as the majority of victims have little or no warning of cloud-to-ground lightning. This suggests it would be valuable to message the threat of lightning before it occurs, especially to NWS core partners that have the responsibility to protect large numbers of people. During the summer of 2018, a subset of forecasters from the Jacksonville, Florida, NWS Weather Forecast Office investigated if messaging the threat of cloud-to-ground (CG) lightning in developing convection was possible. Based on previous CG lightning forecasting research, forecasters incorporated new high-resolution Geostationary Operational Environmental Satellite (GOES)-16 Day Cloud Phase Distinction red–green–blue (RGB) composite imagery with Multi-Radar Multi-Sensor isothermal reflectivity and total lightning data to determine if there was enough confidence to message the threat of CG lightning before it occurred. This paper will introduce the Day Cloud Phase Distinction RGB composite, show how it can add value for short-term lightning forecasting, and provide an operational example illustrating how fusing these datasets together may be able to provide confidence and extend the lead time when messaging the threat of cloud-to-ground lightning before it occurs.

Current affiliation: NOAA/NWS Southern Region Headquarters, Fort Worth, Texas.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cynthia B. Elsenheimer, cindy.elsenheimer@noaa.gov

Abstract

In 2001, the National Weather Service (NWS) began a Lightning Safety Awareness Campaign to reduce lightning-related fatalities in the United States. Although fatalities have decreased 41% since the campaign began, lightning still poses a significant threat to public safety as the majority of victims have little or no warning of cloud-to-ground lightning. This suggests it would be valuable to message the threat of lightning before it occurs, especially to NWS core partners that have the responsibility to protect large numbers of people. During the summer of 2018, a subset of forecasters from the Jacksonville, Florida, NWS Weather Forecast Office investigated if messaging the threat of cloud-to-ground (CG) lightning in developing convection was possible. Based on previous CG lightning forecasting research, forecasters incorporated new high-resolution Geostationary Operational Environmental Satellite (GOES)-16 Day Cloud Phase Distinction red–green–blue (RGB) composite imagery with Multi-Radar Multi-Sensor isothermal reflectivity and total lightning data to determine if there was enough confidence to message the threat of CG lightning before it occurred. This paper will introduce the Day Cloud Phase Distinction RGB composite, show how it can add value for short-term lightning forecasting, and provide an operational example illustrating how fusing these datasets together may be able to provide confidence and extend the lead time when messaging the threat of cloud-to-ground lightning before it occurs.

Current affiliation: NOAA/NWS Southern Region Headquarters, Fort Worth, Texas.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cynthia B. Elsenheimer, cindy.elsenheimer@noaa.gov
Save
  • Baker, M. B., and J. G. Dash, 1994: Mechanism of charge transfer between colliding ice particles in thunderstorms. J. Geophys. Res., 99, 10 62110 626, https://doi.org/10.1029/93JD01633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., K. Knupp, A. Detwiler, L. Liu, I. J. Caylor, and R. A. Black, 1997: Evolution of a Florida thunderstorm during the Convection and Precipitation/Electrification Experiment: The case of 9 August 1991. Mon. Wea. Rev., 125, 21312160, https://doi.org/10.1175/1520-0493(1997)125<2131:EOAFTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., and D. R. MacGorman, 2013: Theory and observations of controls on lightning flash size spectra. J. Atmos. Sci., 70, 40124029, https://doi.org/10.1175/JAS-D-12-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buechler, D. E., and S. J. Goodman, 1990: Echo size and asymmetry: Impact on NEXRAD storm identification. J. Appl. Meteor., 29, 962969, https://doi.org/10.1175/1520-0450(1990)029<0962:ESAAIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calhoun, K. M., D. R. MacGorman, C. L. Ziegler, and M. I. Biggerstaff, 2013: Evolution of lightning activity and storm charge relative to dual-Doppler analysis of a high-precipitation supercell storm. Mon. Wea. Rev., 141, 21992223, https://doi.org/10.1175/MWR-D-12-00258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calhoun, K. M., and Coauthors, 2018: Cloud-to-ground lightning probabilities and warnings within an integrated warning team. Special Symp. on Impact-Based Decision Support Services, Austin, TX, Amer. Meteor. Soc., 4.4, https://ams.confex.com/ams/98Annual/webprogram/Paper329888.html.

    • Search Google Scholar
    • Export Citation
  • Chylek, P., C. C. Borel, and J. Klett, 2004: Mixed phase clouds, cloud electrification and remote sensing. Preprints, Los Alamos Workshop on Lightning Monitoring from Space, Santa Fe, NM, Los Alamos National Laboratory, 1–7.

  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51, 499518, https://doi.org/10.1109/TEMC.2009.2023450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, https://doi.org/10.1029/2007JD009598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmer, N. J., E. Berndt, and G. J. Jedlovec, 2016: Limb correction of MODIS and VIIRS infrared channels for the improved interpretation of RGB composites. J. Atmos. Oceanic Technol., 33, 10731087, https://doi.org/10.1175/JTECH-D-15-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EUMETSAT, 2009: Best practices for RGB compositing of multi-spectral imagery. User Services Division, EUMETSAT, 8 pp., http://oiswww.eumetsat.int/~idds/html/doc/best_practices.pdf.

  • Fuell, K. K., B. J. Guyer, D. Kann, A. L. Molthan, and N. Elmer, 2016: Next generation satellite RGB dust imagery leads to operational changes at NWS Albuquerque. J. Oper. Meteor., 4, 7591, https://doi.org/10.15191/nwajom.2016.0406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatlin, P. N., and S. J. Goodman, 2010: A total lightning trending algorithm to identify severe thunderstorms. J. Atmos. Oceanic Technol., 27, 322, https://doi.org/10.1175/2009JTECHA1286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., D. E. Buechler, P. D. Wright, and W. D. Rust, 1988: Lightning and precipitation history of a microburst-producing storm. Geophys. Res. Lett., 15, 11851188, https://doi.org/10.1029/GL015i011p01185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2005: The North Alabama Lightning Mapping Array: Recent severe storm observations and future prospects. Atmos. Res., 76, 423437, https://doi.org/10.1016/j.atmosres.2004.11.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gravelle, C. M., K. J. Runk, K. L. Crandall, and D. W. Snyder, 2016: Forecaster evaluations of high temporal satellite imagery for the GOES-R era at the NWS Operations Proving Ground. Wea. Forecasting, 31, 11571177, https://doi.org/10.1175/WAF-D-15-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gremillion, M. S., and R. E. Orville, 1999: Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: A study of lightning initiation signatures as indicated by the WSR-88D. Wea. Forecasting, 14, 640649, https://doi.org/10.1175/1520-0434(1999)014<0640:TCOCTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, R. J., J. R. Mecikalski, W. M. MacKenzie Jr., P. A. Durkee, and K. E. Nielsen, 2010: The definition of GOES infrared lightning initiation interest fields. J. Appl. Meteor. Climatol., 49, 25272543, https://doi.org/10.1175/2010JAMC2575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodanish, S., D. Sharp, W. Collins, C. Paxton, and R. E. Orville, 1997: A 10-yr monthly lightning climatology of Florida: 1986–95. Wea. Forecasting, 12, 439448, https://doi.org/10.1175/1520-0434(1997)012<0439:AYMLCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holle, R. L., K. L. Cummins, and W. A. Brooks, 2016: Seasonal, monthly, and weekly distributions of NLDN and GLD360 cloud-to-ground lightning. Mon. Wea. Rev., 144, 28552870, https://doi.org/10.1175/MWR-D-16-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffines, G. R., and R. E. Orville, 1999: Lightning ground flash density and thunderstorm duration in the continental United States: 1989–96. J. Appl. Meteor., 38, 10131019, https://doi.org/10.1175/1520-0450(1999)038<1013:LGFDAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., M. J. Murphy, and E. P. Krider, 1996: Multiple-parameter radar observations of isolated Florida thunderstorms during the onset of electrification. J. Appl. Meteor., 35, 343354, https://doi.org/10.1175/1520-0450(1996)035<0343:MPROOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensenius, J. S., 2016: NOAA’s lightning safety awareness efforts—What we’ve accomplished in 15 years. Preprints, 24th Int. Lightning Detection Conf. and Sixth Int. Lightning Meteorology Conf., San Diego, CA, Vaisala, 1–5.

  • Krehbiel, P. R., 1986: The electrical structure of thunderstorms. The Earth’s Electrical Environment, E. P. Krider and R. G. Roble, Eds., National Academy Press, 90–113.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengyel, M. M., H. E. Brooks, R. L. Holle, and M. A. Cooper, 2005: Lightning casualties and their proximity to surrounding cloud-to-ground lightning. 14th Symp. on Education, San Diego, CA, Amer. Meteor. Soc., P1.35, http://ams.confex.com/ams/pdfpapers/85775.pdf.

    • Search Google Scholar
    • Export Citation
  • Lindley, T. T., A. R. Anderson, V. N. Mahale, T. S. Curl, W. E. Line, S. S. Lindstrom, and A. S. Bachmeier, 2016: Wildfire detection notifications for impact-based decision support services in Oklahoma using geostationary super rapid scan satellite imagery. J. Oper. Meteor., 4, 182191, https://doi.org/10.15191/nwajom.2016.0414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Line, W. E., T. J. Schmit, and S. J. Goodman, 2016: Use of geostationary super rapid scan satellite imagery by the Storm Prediction Center. Wea. Forecasting, 31, 483494, https://doi.org/10.1175/WAF-D-15-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and S. Heckman, 2012: Total lightning data and real-time severe storm prediction. TECO-2012—WMO Tech. Conf. on Meteorological and Environmental Instruments and Methods of Observation, Brussels, Belgium, World Meteorological Organization, P5(10).

  • Mecikalski, J. R., and K. M. Bedka, 2006: Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Wea. Rev., 134, 4978, https://doi.org/10.1175/MWR3062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., X. Li, L. D. Carey, E. W. McCaul Jr., and T. A. Coleman, 2013: Regional comparison of GOES cloud-top properties and radar characteristics in advance of first-flash lightning initiation. Mon. Wea. Rev., 141, 5574, https://doi.org/10.1175/MWR-D-12-00120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, T. C., K. M. Kuhlman, D. M. Kingfield, and D. J. Gagne II, 2016: Using random forest technique to create cloud-to-ground lightning probabilities. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 146, https://ams.confex.com/ams/28SLS/webprogram/Paper301841.html.

  • Mosier, R. M., C. Schumacher, R. E. Orville, and L. D. Carey, 2011: Radar nowcasting of cloud-to-ground lightning over Houston, Texas. Wea. Forecasting, 26, 199212, https://doi.org/10.1175/2010WAF2222431.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., H. J. Christian, and S. A. Rutledge, 2005: TRMM observations of the global relationship between ice water content and lightning. Geophys. Res. Lett., 32, L14819, https://doi.org/10.1029/2005GL023236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and H. E. Fuelberg, 2010: Pre- and postupgrade distributions of NLDN reported cloud-to-ground lightning characteristics in the contiguous United States. Mon. Wea. Rev., 138, 36233633, https://doi.org/10.1175/2010MWR3283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., H. Bax-Norman, C. Emerisic, E. E. Avila, and N. E. Castellano, 2006: Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 132, 26532673, https://doi.org/10.1256/qj.05.218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, https://doi.org/10.1175/BAMS-86-8-1079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., G. T. Stano, P. J. Meyer, B. C. Carcione, and T. Barron, 2017: Lightning decision support using VHF total lightning mapping and NLDN cloud-to-ground data in North Alabama. J. Oper. Meteor., 5, 134145, https://doi.org/10.15191/nwajom.2017.0511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, E. V., G. T. Stano, L. D. Carey, and W. A. Petersen, 2013: Radar applications for nowcasting lightning cessation. Sixth Conf. on the Meteorological Applications of Lightning Data, Austin, TX, Amer. Meteor. Soc., 5.2, https://ams.confex.com/ams/93Annual/webprogram/Paper220563.html.

  • Scott, M., and L. D. Carey, 2014: Investigating the use of dual-polarization radar variables in forecasting lightning initiation. 26th Conf. on Weather Analysis and Forecasting/22nd Conf. on Numerical Weather Prediction, Atlanta, GA, Amer. Meteor. Soc., 4A.1A, https://ams.confex.com/ams/94Annual/webprogram/Paper236159.html.

  • Seroka, G. N., R. E. Orville, and C. Schumacher, 2012: Radar nowcasting of total lightning over the Kennedy Space Center. Wea. Forecasting, 27, 189204, https://doi.org/10.1175/WAF-D-11-00035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548, https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., L. J. Miller, K. C. Wiens, and S. A. Rutledge, 2005: The 29 June supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 41274150, https://doi.org/10.1175/JAS3585.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, B. R., L. D. Carey, D. Schneider, K. Keeter, and R. Gonski, 2003: Using WSR-88D reflectivity for the prediction of cloud-to-ground lightning: A central North Carolina study. Natl. Wea. Dig., 27 (1), 3544.

    • Search Google Scholar
    • Export Citation
  • Wolf, P., 2007: Anticipating the initiation, cessation, and frequency of cloud-to-ground lightning, utilizing WSR-88D reflectivity data. NWA Electron. J. Oper. Meteor., 2007-EJ1, http://nwafiles.nwas.org/ej/pdf/2007-EJ1.pdf.

    • Search Google Scholar
    • Export Citation
  • Woodard, C. J., L. D. Carey, W. A. Petersen, and W. P. Roeder, 2012: Operational utility of dual-polarization variables in lightning initiation forecasting. Electron. J. Oper. Meteor., 13, 79102, http://nwafiles.nwas.org/ej/pdf/2012-EJ6.pdf.

    • Search Google Scholar
    • Export Citation
  • Zavodsky, B. T., A. L. Molthan, and M. J. Folmer, 2013: Multispectral imagery for detecting stratospheric air intrusions associated with mid-latitude cyclones. J. Oper. Meteor., 1, 7183, https://doi.org/10.15191/nwajom.2013.0107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and K. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 17511759, https://doi.org/10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1023 374 22
PDF Downloads 860 257 12