• Alessandrini, S., L. Delle Monache, S. Sperati, and J. N. Nissen, 2015: A novel application of an analog ensemble for short-term wind power forecasting. Renewable Energy, 76, 768781, https://doi.org/10.1016/j.renene.2014.11.061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, N. Kelley, R. M. Hardesty, and W. A. Brewer, 2013: Wind energy meteorology insight into wind properties in the turbine-rotor layer of the atmosphere from high-resolution Doppler lidar. Bull. Amer. Meteor. Soc., 94, 883902, https://doi.org/10.1175/BAMS-D-11-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., T. Nipen, Y. Liu, G. Roux, and R. Stull, 2011: Kalman filter and analog schemes to postprocess numerical weather predictions. Mon. Wea. Rev., 139, 35543570, https://doi.org/10.1175/2011MWR3653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., F. A. Eckel, D. L. Rife, B. Nagarajan, and K. Searight, 2013: Probabilistic weather prediction with an analog ensemble. Mon. Wea. Rev., 141, 34983516, https://doi.org/10.1175/MWR-D-12-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DOE, 2008: 20% wind energy by 2030: Increasing wind energy’s contribution to U.S. electricity supply. DOE Tech. Rep. DOE/GO-102008-2567, 229 pp., https://www.nrel.gov/docs/fy08osti/41869.pdf.

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., 2002: Impact of verification grid-box size on warm-season QPF skill measures. Wea. Forecasting, 17, 12961302, https://doi.org/10.1175/1520-0434(2002)017<1296:IOVGBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., and D. A. Lowry, 1972: The use of Model Output Statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 12031211, https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. R., and R. S. Schumacher, 2016: Using reforecasts to improve forecasting of fog and visibility for aviation. Wea. Forecasting, 31, 467482, https://doi.org/10.1175/WAF-D-15-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junk, C., L. Delle Monache, and S. Alessandrini, 2015a: Analog-based ensemble model output statistics. Mon. Wea. Rev., 143, 29092917, https://doi.org/10.1175/MWR-D-15-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junk, C., L. Delle Monache, S. Alessandrini, G. Cervone, and L. von Bremen, 2015b: Predictor-weighting strategies for probabilistic wind power forecasting with an analog ensemble. Meteor. Z., 24, 361379, https://doi.org/10.1127/metz/2015/0659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Wind Institute, 2019: West Texas Mesonet/National Wind Institute Information. Accessed 22 April 2019, http://www.mesonet.ttu.edu/sodarobs.html.

  • Perez, R., and Coauthors, 2013: Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe. Sol. Energy, 94, 305326, https://doi.org/10.1016/j.solener.2013.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, J. G., and Coauthors, 2017: The Weather Research and Forecasting model: Overview, system efforts, and future directions. Bull. Amer. Meteor. Soc., 98, 17171737, https://doi.org/10.1175/BAMS-D-15-00308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, S., J. Lundquist, and W. Shaw, 2008: U.S. Department of Energy Workshop Report: Research needs for wind resource characterization. NREL Tech. Rep. NREL/TP-500-43521, 116 pp., https://www.nrel.gov/docs/fy08osti/43521.pdf.

  • Shaw, W., J. Lundquist, and S. J. Schreck, 2009: Research needs for wind resource characterization. Bull. Amer. Meteor. Soc., 90, 535538, https://doi.org/10.1175/2008BAMS2729.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1016 1018 200
Full Text Views 6 6 3
PDF Downloads 2 2 1

Configuration of Statistical Postprocessing Techniques for Improved Low-Level Wind Speed Forecasts in West Texas

View More View Less
  • 1 Texas Tech University, Lubbock, Texas
  • 2 Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado
  • 3 Texas Tech University, Lubbock, Texas
© Get Permissions
Restricted access

Abstract

The wind energy industry needs accurate forecasts of wind speeds at turbine hub height and in the rotor layer to accurately predict power output from a wind farm. Current numerical weather prediction (NWP) models struggle to accurately predict low-level winds, partially due to systematic errors within the models due to deficiencies in physics parameterization schemes. These types of errors are addressed in this study with two statistical postprocessing techniques—model output statistics (MOS) and the analog ensemble (AnEn)—to understand the value of each technique in improving rotor-layer wind forecasts. This study is unique in that it compares the techniques using a sonic detection and ranging (SODAR) wind speed dataset that spans the entire turbine rotor layer. This study uses reforecasts from the Weather Research and Forecasting (WRF) Model and observations in west Texas over periods of up to two years to examine the skill added to forecasts when applying both MOS and the AnEn. Different aspects of the techniques are tested, including model horizontal and vertical resolution, number of predictors, and training set length. Both MOS and the AnEn are applied to several levels representing heights in the turbine rotor layer (40, 60, 80, 100, and 120 m). This study demonstrates the degree of improvement that different configurations of each technique provides to raw WRF forecasts, to help guide their use for low-level wind speed forecasts. It was found that both AnEn and MOS show significant improvement over the raw WRF forecasts, but the two methods do not differ significantly from each other.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Meghan J. Mitchell, meghan.j.mitchell@ttu.edu

Abstract

The wind energy industry needs accurate forecasts of wind speeds at turbine hub height and in the rotor layer to accurately predict power output from a wind farm. Current numerical weather prediction (NWP) models struggle to accurately predict low-level winds, partially due to systematic errors within the models due to deficiencies in physics parameterization schemes. These types of errors are addressed in this study with two statistical postprocessing techniques—model output statistics (MOS) and the analog ensemble (AnEn)—to understand the value of each technique in improving rotor-layer wind forecasts. This study is unique in that it compares the techniques using a sonic detection and ranging (SODAR) wind speed dataset that spans the entire turbine rotor layer. This study uses reforecasts from the Weather Research and Forecasting (WRF) Model and observations in west Texas over periods of up to two years to examine the skill added to forecasts when applying both MOS and the AnEn. Different aspects of the techniques are tested, including model horizontal and vertical resolution, number of predictors, and training set length. Both MOS and the AnEn are applied to several levels representing heights in the turbine rotor layer (40, 60, 80, 100, and 120 m). This study demonstrates the degree of improvement that different configurations of each technique provides to raw WRF forecasts, to help guide their use for low-level wind speed forecasts. It was found that both AnEn and MOS show significant improvement over the raw WRF forecasts, but the two methods do not differ significantly from each other.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Meghan J. Mitchell, meghan.j.mitchell@ttu.edu
Save