• AMS, 2008: Enhancing weather information with probability forecasts: An information statement of the American Meteorological Society. Bull. Amer. Meteor. Soc., 89, 10491053.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., and T. N. Palmer, 1998: Impact of ensemble size on ensemble prediction. Mon. Wea. Rev., 126, 25032518, https://doi.org/10.1175/1520-0493(1998)126<2503:IOESOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, and Y. Zhu, 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133, 10761097, https://doi.org/10.1175/MWR2905.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, S., R. Huff, K. Horton, A. J. Sutton, and T. Elias, 2015: Observing and forecasting vog dispersion from Kīlauea Volcano, Hawai’i. Bull. Amer. Meteor. Soc., 96, 16671686, https://doi.org/10.1175/BAMS-D-14-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., and R. Stull, 2003: An ensemble air-quality forecast over western Europe during an ozone episode. Atmos. Environ., 37, 34693474, https://doi.org/10.1016/S1352-2310(03)00475-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., F. A. Eckel, D. L. Rife, B. Nagarajan, and K. Searight, 2013: Probabilistic weather prediction with an analog ensemble. Mon. Wea. Rev., 141, 34983516, https://doi.org/10.1175/MWR-D-12-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Djalalova, I., L. Monache, and J. Wilczak, 2015: PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model. Atmos. Environ., 108, 7687, https://doi.org/10.1016/j.atmosenv.2015.02.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., 2003: Evaluation of an ensemble dispersion calculation. J. Appl. Meteor., 42, 308317, https://doi.org/10.1175/1520-0450(2003)042<0308:EOAEDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. D. Hess, 1997: Description of the HYSPLIT_4 modeling system. NOAA Tech. Memo. ERL ARL-224, NOAA/Air Resources Laboratory, Silver Spring, MD, 27 pp., www.arl.noaa.gov/documents/reports/arl-224.pdf.

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 24612480, https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckel, F. A., and L. Delle Monache, 2016: A hybrid NWP-analog ensemble. Mon. Wea. Rev., 144, 897911, https://doi.org/10.1175/MWR-D-15-0096.1.

  • Edmonds, M., and et al. , 2013: Magma storage, transport and degassing during the 2008–10 summit eruption at Kīlauea Volcano, Hawai’i. Geochim. Cosmochim. Acta, 123, 284301, https://doi.org/10.1016/j.gca.2013.05.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elias, T., and A. J. Sutton, 2012: Sulfur dioxide emission rates from Kīlauea Volcano, Hawai‘i, 2007–2010. USGS Open File Rep. 2012-1107, 25 pp., http://pubs.usgs.gov/of/2012/1107/.

    • Crossref
    • Export Citation
  • Elias, T., and A. J. Sutton, 2017: Volcanic air pollution hazards in Hawaii. U.S. Geological Survey Fact Sheet 2017–3017, 4 pp., https://doi.org/10.3133/fs20173017.

    • Crossref
    • Export Citation
  • Elias, T., A. J. Sutton, C. Oppenheimer, K. A. Horton, H. Garbeil, V. Tsanev, A. J. S. McGonigle, and G. Williams-Jones, 2006: Comparison of COSPEC and two miniature ultraviolet spectrometer systems for SO2 measurements using scattered sunlight. Bull. Volcanol., 68, 313322, https://doi.org/10.1007/s00445-005-0026-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elias, T., A. J. Sutton, J. P. Kauahikaua, J. D. Ray, and J. L. Babb, 2009: Ambient air quality effects of the 2008–2009 Halema‘uma‘u eruption on the Island of Hawai‘i. Eos, Trans. Amer. Geophys. Union, 90 (Fall Meeting Suppl.), Abstract V43G-2337.

  • Elias, T., C. Kern, K. Horton, A. Sutton, and H. Garbeil, 2018: Measuring SO2 emission rates at Kīlauea Volcano, Hawaii, using an array of upward-looking UV spectrometers, 2014–2017. Front. Earth Sci., 6, 214, https://doi.org/10.3389/feart.2018.00214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Environmental Protection Agency, 2019: EPA releases 2018 power plant emissions demonstrating continued progress. Accessed 24 July 2019, https://www.epa.gov/newsreleases/epa-releases-2018-power-plant-emissions-demonstrating-continued-progress.

  • Gardner, M. W., and S. R. Dorling, 1999: Neural network modelling and prediction of hourly NOX and NO2 concentrations in urban air in London. Atmos. Environ., 33, 709719, https://doi.org/10.1016/S1352-2310(98)00230-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garner, G., and A. Thompson, 2013: Ensemble statistical post-processing of the national air quality forecast capability: Enhancing ozone forecasts in Baltimore, Maryland. Atmos. Environ., 81, 517522, https://doi.org/10.1016/j.atmosenv.2013.09.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, J., and et al. , 2008: Guidelines on communicating forecast uncertainty. WMO Tech. Doc. 4122, 25 pp.

  • Giorgi, M., A. Ficarella, and M. Tarantino, 2011: Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods. Energy, 36, 39683978, https://doi.org/10.1016/j.energy.2011.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., and D. A. Lowry, 1972: The use of Model Output Statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 12031211, https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., and A. E. Raftery, 2004: Strictly proper scoring rules, prediction, and estimation. Tech. Rep. 463, Department of Statistics, University of Washington, 29 pp., www.stat.washington.edu/tech.reports.

    • Crossref
    • Export Citation
  • Guam Homeland Security, 2018: Volcanic haze reaches the Marianas; those with respiratory issues advised to take precautions. Accessed 29 May 2019, https://www.ghs.guam.gov/volcanic-haze-reaches-marianas-those-respiratory-issues-advised-take-precautions.

  • Halliday, T. J., J. Lynham, and Á. de Paula, 2019: Vog: Using volcanic eruptions to estimate the health costs of particulates. Econ. J., 129, 17821816, https://doi.org/10.1111/ecoj.12609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschberg, P. A., and et al. , 2011: A weather and climate enterprise strategic implementation plan for generating and communicating forecast uncertainty information. Bull. Amer. Meteor. Soc., 92, 16511666, https://doi.org/10.1175/BAMS-D-11-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollingshead, A., S. Businger, R. Draxler, J. Porter, and D. Stevens, 2003: Dispersion modeling of the Kilauea plume. Bound.-Layer Meteor., 108, 121144, https://doi.org/10.1023/A:1023086823088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hopson, T. M., 2014: Assessing the ensemble spread–error relationship. Mon. Wea. Rev., 142, 11251142, https://doi.org/10.1175/MWR-D-12-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, K. A., J. Porter, P. Mouginis-Mark, C. Oppenheimer, and H. Garbeil, 2003: Apparatus for measuring radiation and method of use. U.S. Patent 7,148,488.

  • Horton, K. A., G. Williams-Jones, H. Garbeil, T. Elias, A. J. Sutton, P. Mouginis-Mark, J. N. Porter, and S. Clegg, 2006: Real-time measurement of volcanic SO2 emissions: Validation of a new UV correlation spectrometer (FLYSPEC). Bull. Volcanol., 68, 323327, https://doi.org/10.1007/s00445-005-0014-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, K. A., H. Garbeil, A. J. Sutton, T. Elias, and S. Businger, 2012: Early monitoring results from the Halema‘uma’u vog measurement and prediction FLYSPEC array. Extended Abstracts, AGU Chapman Conf. on Hawaiian Volcanoes: From Source to Surface, Waikoloa, HI, Amer. Geophys. Union, TH-34, http://hilo.hawaii.edu/~kenhon/HawaiiChapman/documents/1HawaiiChapmanAbstracts.pdf.

  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, 61 pp.

  • Jiménez-Guerrero, P., S. Jerez, J. P. Montávez, and R. M. Trigo, 2013: Uncertainties in future ozone and PM10 projections over Europe from a regional climate multiphysics ensemble. Geophys. Res. Lett., 40, 57645769, https://doi.org/10.1002/2013GL057403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleinman, M. T., 1995: Health effects of inhaled particles and acid sulfate aerosols. Proc. Vog and Laze Seminar, Honolulu, HI, Hawaii State Department of Health.

  • Kroll, J. H., and et al. , 2015: Atmospheric evolution of sulfur emissions from Kilauea: Real-time measurements of oxidation, dilution, and neutralization within a volcano plume. Environ. Sci. Technol., 49, 41294137, https://doi.org/10.1021/es506119x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, K., and K. Westrick, 2006: Short-term wind forecasting using off-site observations. Wind Energy, 9, 5562, https://doi.org/10.1002/we.179.

  • Leith, C. E., 1974: Theoretical skill of Monte-Carlo forecasts. Mon. Wea. Rev., 102, 409418, https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longo, B. M., W. Yang, J. B. Green, F. L. Crosby, and V. L. Crosby, 2010: Acute health effects associated with exposure to volcanic air pollution (vog) from increased activity at Kilauea Volcano in 2008. J. Toxicol. Environ. Health, 73A, 13701381, https://doi.org/10.1080/15287394.2010.497440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mannino, D. M., S. M. Ruben, and F. C. Holschuh, 1995: Weekly variability of emergency room visits for asthma in Hilo, Hawai’i, 1981–1991. Proc. Vog and Laze Seminar, Honolulu, HI, Hawaii State Department of Health.

  • Mason, S. J., and N. E. Graham, 1999: Conditional probabilities, relative operating characteristics, and relative operating levels. Wea. Forecasting, 14, 713725, https://doi.org/10.1175/1520-0434(1999)014<0713:CPROCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and A. P. Weigel, 2009: A generic forecast verification framework for administrative purposes. Mon. Wea. Rev., 137, 331349, https://doi.org/10.1175/2008MWR2553.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, T. A., and et al. , 2012: Halogens and trace metal emissions from the ongoing 2008 summit eruption of Kilauea volcano, Hawaii. Geochim. Cosmochim. Acta, 83, 292323, https://doi.org/10.1016/j.gca.2011.11.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michaud, J. D., J.-P. Michaud, and D. Krupitsky, 2007: Temporal variability in SO2 exposures at Hawai’i Volcanoes National Park, USA. Environ. Geol., 52, 8192, https://doi.org/10.1007/s00254-006-0459-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1991: Forecast verification: Its complexity and dimensionality. Mon. Wea. Rev., 119, 15901601, https://doi.org/10.1175/1520-0493(1991)119<1590:FVICAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NRC, 2006: Completing the Forecasts: Characterizing and Communicating Uncertainty for Better Decisions Using Weather and Climate Forecasts. National Academies Press, 124 pp.

    • Search Google Scholar
    • Export Citation
  • Patrick, M. R., T. R. Orr, D. A. Swanson, T. Elias, and B. Shiro, 2018: Lava lake activity at the summit of Kīlauea Volcano in 2016. U.S. Geological Survey Scientific Investigations Rep. 2018–5008, 58 pp., https://doi.org/10.3133/sir20185008.

    • Crossref
    • Export Citation
  • Pattantyus, A., and S. Businger, 2015: Ensemble forecasting of volcanic emissions in Hawai’i. Ann. Geophys., 57, https://doi.org/10.4401/ag-6607.

    • Search Google Scholar
    • Export Citation
  • Pattantyus, A., L. Holland, S. Businger, and T. Elias, 2018a: Projecting air quality impacts for the next eruption of Mauna Loa Volcano, Hawai‘i. 20th Conf. on Air Chemistry, Austin, TX, Amer. Meteor. Soc., 7.3A, https://ams.confex.com/ams/98Annual/webprogram/Paper335864.html.

  • Pattantyus, A., S. Businger, and S. Howell, 2018b: Review of sulfur dioxide to sulfate aerosol chemistry at Kīlauea Volcano, Hawai’i. Atmos. Environ., 185, 262271, https://doi.org/10.1016/j.atmosenv.2018.04.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porter, J., and A. Clarke, 1997: Aerosol size distribution models based on in situ measurements. J. Geophys. Res., 102, 60356045, https://doi.org/10.1029/96JD03403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reikard, G., 2012: Forecasting volcanic air pollution in Hawai’i: Tests of time series models. Atmos. Environ., 60, 593600, https://doi.org/10.1016/j.atmosenv.2012.06.040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reikard, G., 2019: Volcanic emissions and air pollution: Forecasts from time series models. Atmos. Environ.: X, 1, 100001, https://doi.org/10.1016/j.aeaoa.2018.100001.

    • Search Google Scholar
    • Export Citation
  • Ruben, S. M., D. M. Mannini, F. C. Holschuh, T. C. Holshuh, M. D. Wilson, and T. Holschuh, 1995: Emergency room visits for asthma and chronic obstructive pulmonary disease on the Island of Hawai‘i, 1981–1991. Proc. Earthquake, Tsunami, and Volcano Hazards Seminar, Hilo, HI, University of Hawaii at Hilo.

  • Sheshkin, D. J., 2007: Handbook of Parametric and Nonparametric Statistical Procedures. Chapman & Hall/CRC, 1776 pp.

  • Smith, R. B., and V. Grubisic, 1993: Aerial observations of Hawaii’s wake. J. Atmos. Sci., 50, 37283750, https://doi.org/10.1175/1520-0469(1993)050<3728:AOOHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 20592077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tam, E., and et al. , 2007: Volcanic air pollution and respiratory symptoms in school children on the Big Island of Hawai’i. Proc. ATS 2007, San Francisco, CA, American Thoracic Society, A168.

  • Tam, E., and et al. , 2016: Volcanic air pollution over the Island of Hawai’i: Emissions, dispersal, and composition. Association with respiratory symptoms and lung function in Hawai’i Island school children. Environ. Int., 92–93, 543552, https://doi.org/10.1016/j.envint.2016.03.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tofte, K., P. Chu, and G. M. Barnes, 2017: Large-scale weather patterns favorable for volcanic smog occurrences on O’ahu, Hawai’i. Air Qual. Atmos. Health, 10, 11631180, https://doi.org/10.1007/s11869-017-0502-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unger, D. A., 1985: A method to estimate the continuous ranked probability score. Preprints, Ninth Conf. on Probability and Statistics in Atmospheric Sciences, Virginia Beach, VA, Amer. Meteor. Soc., 206213.

  • USGS, 2019a: Volcano updates archive. Accessed 23 August 2019, https://volcanoes.usgs.gov/vhp/archive_search.htm.

  • USGS, 2019b: Frequently asked questions about Mauna Loa volcano. Accessed 23 August 2019, https://volcanoes.usgs.gov/observatories/hvo/faq_maunaloa.html.

  • Weigel, A. P., and S. J. Mason, 2011: The generalized discrimination score for ensemble forecasts. Mon. Wea. Rev., 139, 30693074, https://doi.org/10.1175/MWR-D-10-05069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., and T. Hamill, 2007: Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Wea. Rev., 135, 23792390, https://doi.org/10.1175/MWR3402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2012: Guidelines on Ensemble Prediction Systems and Forecasting. WMO Tech. 1091, World Meteorological Organization, 23 pp.

  • Worth, R. M., 1995: Respiratory impacts associated with chronic VOG exposure on the Island of Hawai’i. Proc. Vog and Laze Seminar, Honolulu, HI, Hawaii State Department of Health.

All Time Past Year Past 30 Days
Abstract Views 186 186 86
Full Text Views 52 52 31
PDF Downloads 62 62 41

Two Ensemble Approaches for Forecasting Sulfur Dioxide Concentrations from Kīlauea Volcano

View More View Less
  • 1 Department of Atmospheric Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii
  • | 2 U.S. Geological Survey, Hawaiian Volcano Observatory, Hilo, Hawaii
  • | 3 Department of Atmospheric Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

Kīlauea volcano, located on the island of Hawaii, is one of the most active volcanoes in the world. It was in a state of nearly continuous eruption from 1983 to 2018 with copious emissions of sulfur dioxide (SO2) that affected public health, agriculture, and infrastructure over large portions of the island. Since 2010, the University of Hawaiʻi at Mānoa provides publicly available vog forecasts that began in 2010 to aid in the mitigation of volcanic smog (or “vog”) as a hazard. In September 2017, the forecast system began to produce operational ensemble forecasts. The months that preceded Kīlauea’s historic lower east rift zone eruption of 2018 provide an opportunity to evaluate the newly implemented air quality ensemble prediction system and compare it another approach to the generation of ensemble members. One of the two approaches generates perturbations in the wind field while the other perturbs the sulfur dioxide (SO2) emission rate from the volcano. This comparison has implications for the limits of forecast predictability under the particularly dynamic conditions at Kīlauea volcano. We show that for ensemble forecasts of SO2 generated under these conditions, the uncertainty associated with the SO2 emission rate approaches that of the uncertainty in the wind field. However, the inclusion of a fluctuating SO2 emission rate has the potential to improve the prediction of the changes in air quality downwind of the volcano with suitable postprocessing.

Corresponding author: Lacey Holland, lh33@hawaii.edu

Abstract

Kīlauea volcano, located on the island of Hawaii, is one of the most active volcanoes in the world. It was in a state of nearly continuous eruption from 1983 to 2018 with copious emissions of sulfur dioxide (SO2) that affected public health, agriculture, and infrastructure over large portions of the island. Since 2010, the University of Hawaiʻi at Mānoa provides publicly available vog forecasts that began in 2010 to aid in the mitigation of volcanic smog (or “vog”) as a hazard. In September 2017, the forecast system began to produce operational ensemble forecasts. The months that preceded Kīlauea’s historic lower east rift zone eruption of 2018 provide an opportunity to evaluate the newly implemented air quality ensemble prediction system and compare it another approach to the generation of ensemble members. One of the two approaches generates perturbations in the wind field while the other perturbs the sulfur dioxide (SO2) emission rate from the volcano. This comparison has implications for the limits of forecast predictability under the particularly dynamic conditions at Kīlauea volcano. We show that for ensemble forecasts of SO2 generated under these conditions, the uncertainty associated with the SO2 emission rate approaches that of the uncertainty in the wind field. However, the inclusion of a fluctuating SO2 emission rate has the potential to improve the prediction of the changes in air quality downwind of the volcano with suitable postprocessing.

Corresponding author: Lacey Holland, lh33@hawaii.edu
Save