• Atlas, D., 1963: Radar analysis of severe storms. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 177220.

  • Beck, J., and C. Weiss, 2013: An assessment of low-level baroclinity and vorticity within a simulated supercell. Mon. Wea. Rev., 141, 649669, https://doi.org/10.1175/MWR-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and Coauthors, 2005: The Shared Mobile Atmospheric Research and Teaching Radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86, 12631274, https://doi.org/10.1175/BAMS-86-9-1263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 2005: More observations of small funnel clouds and other tubular clouds. Mon. Wea. Rev., 133, 37143720, https://doi.org/10.1175/MWR3080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 2020: Observations of tornadoes and their parent supercells using ground-based, mobile Doppler radars. Remote Sensing and Natural Hazards, K. Zhang, Y. Hong, and A. AghaKouchak, Eds., John Wiley & Sons, Inc., in press.

  • Bluestein, H. B., and W. P. Unruh, 1989: Observations of the wind fields in tornadoes, funnel clouds, and wall clouds with a portable Doppler radar. Bull. Amer. Meteor. Soc., 70, 15141525, https://doi.org/10.1175/1520-0477(1989)070<1514:OOTWFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and A. L. Pazmany, 2000: Observations of tornadoes and other convective phenomena with a mobile, 3-mm wavelength, Doppler radar: The spring 1999 field experiment. Bull. Amer. Meteor. Soc., 81, 29392951, https://doi.org/10.1175/1520-0477(2000)081<2939:OOTAOC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and J. C. Snyder, 2015: An observational study of the effects of dry air produced in dissipating convective storms on the predictability of severe weather. Wea. Forecasting, 30, 79114, https://doi.org/10.1175/WAF-D-14-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., A. L. Pazmany, J. C. Galloway, and R. E. McIntosh, 1995: Studies of the substructure of severe convective storms using a mobile 3-mm-wavelength Doppler radar. Bull. Amer. Meteor. Soc., 76, 21552169, https://doi.org/10.1175/1520-0477(1995)076<2155:SOTSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., M. M. French, R. L. Tanamachi, S. Frasier, K. Hardwick, F. Junyent, and A. L. Pazmany, 2007a: Close-range observations of tornadoes in supercells made with a dual-polarization, X-band, mobile Doppler radar. Mon. Wea. Rev., 135, 15221543, https://doi.org/10.1175/MWR3349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., C. C. Weiss, M. M. French, E. M. Holthaus, R. L. Tanamachi, S. Frasier, and A. L. Pazmany, 2007b: The structure of tornadoes near Attica, Kansas, on 12 May 2004: High-resolution, mobile, Doppler radar observations. Mon. Wea. Rev., 135, 475506, https://doi.org/10.1175/MWR3295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., M. M. French, I. PopStefanija, R. T. Bluth, and J. B. Knorr, 2010: A mobile, phased-array Doppler radar for the study of severe convective storms: The MWR-05XP. Bull. Amer. Meteor. Soc., 91, 579600, https://doi.org/10.1175/2009BAMS2914.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., J. C. Snyder, and J. B. Houser, 2015: A multiscale overview of the El Reno, Oklahoma, tornadic supercell of 31 May 2013. Wea. Forecasting, 30, 525552, https://doi.org/10.1175/WAF-D-14-00152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., M. M. French, J. C. Snyder, and J. B. Houser, 2016: Doppler radar observations of anticyclonic tornadoes in cyclonically rotating, right-moving supercells. Mon. Wea. Rev., 144, 15911616, https://doi.org/10.1175/MWR-D-15-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., K. J. Thiem, J. C. Snyder, and J. B. Houser, 2018: The multiple-vortex structure of the El Reno, Oklahoma, tornado on 31 May 2013. Mon. Wea. Rev., 146, 24832502, https://doi.org/10.1175/MWR-D-18-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D., M. R. Kumjian, A. J. Smith, R. D. Palmer, A. V. Ryzhkov, and P. L. Heinselman, 2011: High-resolution polarimetric observations of an EF-4 tornado on 10 May 2010 from OU-PRIME. 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., 3B.4, https://ams.confex.com/ams/35Radar/webprogram/Manuscript/Paper191661/tds_paper_amsradar.pdf.

  • Bodine, D., R. D. Palmer, and G. Zhang, 2014: Dual-wavelength polarimetric radar analyses of tornadic debris signatures. J. Appl. Meteor. Climatol., 53, 242261, https://doi.org/10.1175/JAMC-D-13-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519, https://doi.org/10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. M., and K. R. Knupp, 1980: The Iowa cyclonic-anticyclonic tornado pair and its parent thunderstorm. Mon. Wea. Rev., 108, 16261646, https://doi.org/10.1175/1520-0493(1980)108<1626:TICATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., and V. T. Wood, 2012: The tornadic vortex signature: An update. Wea. Forecasting, 27, 525530, https://doi.org/10.1175/WAF-D-11-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., L. R. Lemon, and D. W. Burgess, 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev., 106, 2938, https://doi.org/10.1175/1520-0493(1978)106<0029:TDBPDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and F. H. Ludlam, 1962: Airflow in convective storms. Quart. J. Roy. Meteor. Soc., 88, 117135, https://doi.org/10.1002/qj.49708837602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., and M. A. Baxter, 2011: Radar tornadic debris signatures on 27 April 2011. Electron. J. Oper. Meteor., 12 (7), http://nwafiles.nwas.org/ej/pdf/2011-ION1.pdf.

    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., and R. A. Brown, 1973: The structure of a severe right-moving thunderstorm: New single Doppler radar evidence. Preprints, Eighth Conf. on Severe Local Storms, Boston, MA, Amer. Meteor. Soc., 4043.

    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., and M. A. Magsig, 1998: Recent observations of tornado development at near range to WSR-88D radars. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 756759.

    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., M. A. Magsig, J. Wurman, D. C. Dowell, and Y. Richardson, 2002: Radar observations of the 3 May 1999 Oklahoma City tornado. Wea. Forecasting, 17, 456471, https://doi.org/10.1175/1520-0434(2002)017<0456:ROOTMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., E. R. Mansell, C. M. Schwarz, and B. J. Allen, 2010: Tornado and tornadogenesis events seen by the NOXP X-band, dual-polarization radar during VORTEX2 2010. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 5.2, http://ams.confex.com/ams/pdfpapers/176164.pdf.

  • Burgess, D. W., B. R. Smith, H. B. Bluestein, Z. B. Wienhoff, D. W. Reif, R. Smith, and D. Speheger, 2016: A mini-supercell observed during an outbreak of classic supercells on 9 May 2013. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 12A.1, https://ams.confex.com/ams/28SLS/webprogram/Paper300945.html.

  • Cho, J. Y. N., and J. M. Kurdzo, 2019: Tornado-related benefit modeling for weather radar networks. 35th Conf. on Environmental Information Processing Technologies, Phoenix, AZ, Amer. Meteor. Soc. 10B.1, https://ams.confex.com/ams/2019Annual/meetingapp.cgi/Paper/348867.

  • Chrisman, J., 2014a: Multiple Elevation Scan Option for SAILS (MESO-SAILS): The next step in dynamic scanning for the WSR-88D. NOAA, 27 pp., https://www.roc.noaa.gov/WSR88D/PublicDocs/NewTechnology/MESO-SAILS_Description_Briefing_Jan_2014.pdf.

  • Chrisman, J., 2014b: The continuing evolution of dynamic scanning. NEXRAD Now, No. 23, NOAA/NWS/Radar Operations Center, Norman, OK, 8–13, http://www.roc.noaa.gov/WSR88D/PublicDocs/NNOW/NNow23a.pdf.

  • Christian, T. W., and R. M. Wakimoto, 1989: The relationship between radar reflectivities and clouds associated with horizontal roll convection on 8 August 1982. Mon. Wea. Rev., 117, 15301544, https://doi.org/10.1175/1520-0493(1989)117<1530:TRBRRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donaldson, R. J., 1970: Vortex signature recognition by a Doppler radar. J. Appl. Meteor., 9, 661670, https://doi.org/10.1175/1520-0450(1970)009<0661:VSRBAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K., and R. Wilhelmson, 1986: Kelvin–Helmholtz instability in a numerically simulated thunderstorm outflow. Bull. Amer. Meteor. Soc., 67 (4), 416417.

    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, I. PopStefanija, C. A. Baldi, and R. T. Bluth, 2013: Reexamining the vertical development of tornadic vortex signatures in supercells. Mon. Wea. Rev., 141, 45764601, https://doi.org/10.1175/MWR-D-12-00315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1958: Mesoanalysis of the Illinois tornadoes of 9 April 1953. J. Meteor., 15, 288296, https://doi.org/10.1175/1520-0469(1958)015<0288:MOTITO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, C. B., D. J. Bodine, and R. D. Palmer, 2017: Kinematic and polarimetric radar observations of the 10 May 2010, Moore–Choctaw, Oklahoma, tornadic debris signature. Mon. Wea. Rev., 145, 27232741, https://doi.org/10.1175/MWR-D-16-0344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, C. B., C. C. Weiss, A. E. Reinhart, J. C. Snyder, H. B. Bluestein, J. Wurman, and K. A. Kosiba, 2018: In situ and radar observations of the low reflectivity ribbon in supercells during VORTEX2. Mon. Wea. Rev., 146, 307327, https://doi.org/10.1175/MWR-D-17-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., and S. M. Torres, 2011: High-temporal-resolution capabilities of the National Weather Radar Testbed Phased-Array Radar. J. Appl. Meteor. Climatol., 50, 579593, https://doi.org/10.1175/2010JAMC2588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. L. Priegnitz, K. L. Manross, T. M. Smith, and R. W. Adams, 2008: Rapid sampling of severe storms by the National Weather Radar Testbed Phased Array Radar. Wea. Forecasting, 23, 808824, https://doi.org/10.1175/2008WAF2007071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. LaDue, D. M. Kingfield, and R. Hoffman, 2015: Tornado warning decisions using phased-array radar data. Wea. Forecasting, 30, 5778, https://doi.org/10.1175/WAF-D-14-00042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, J. L., H. B. Bluestein, and J. C. Snyder, 2016: A finescale radar examination of the tornadic debris signature and weak-echo reflectivity band associated with a large, violent tornado. Mon. Wea. Rev., 144, 41014130, https://doi.org/10.1175/MWR-D-15-0408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ice, R. L., and Coauthors, 2011: Sensitivity of operational weather radars. 27th Conf. on Interactive Information Processing Systems, Seattle, WA, Amer. Meteor. Soc., 370, https://ams.confex.com/ams/91Annual/webprogram/Paper183654.html.

  • Isom, B., and Coauthors, 2013: The Atmospheric Imaging Radar: Simultaneous volumetric observations using a phased array weather radar. J. Atmos. Oceanic Technol., 30, 655675, https://doi.org/10.1175/JTECH-D-12-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jedlovec, G. J., U. Nair, and S. L. Haines, 2006: Detection of storm damage tracks with EOS data. Wea. Forecasting, 21, 249267, https://doi.org/10.1175/WAF923.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessinger, C. J., D. B. Parsons, and J. W. Wilson, 1988: Observations of a storm containing misocyclones, downbursts, and horizontal vortex circulations. Mon. Wea. Rev., 116, 19591982, https://doi.org/10.1175/1520-0493(1988)116<1959:OOASCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingfield, D. M., and K. M. de Beurs, 2017: Landsat identification of tornado damage by land cover and an evaluation of damage recovery in forests. J. Appl. Meteor. Climatol., 56, 965987, https://doi.org/10.1175/JAMC-D-16-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K., J. Wurman, Y. Richardson, P. Markowski, P. Robinson, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571181, https://doi.org/10.1175/MWR-D-12-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, V. M. Melnikov, and T. J. Schuur, 2010: Rapid-scan super-resolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon. Wea. Rev., 138, 37623786, https://doi.org/10.1175/2010MWR3322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., D. J. Bodine, B. L. Cheong, and R. D. Palmer, 2015: High-temporal resolution polarimetric X-band Doppler radar observations of the 20 May 2013 Moore, Oklahoma, tornado. Mon. Wea. Rev., 143, 27112735, https://doi.org/10.1175/MWR-D-14-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., and Coauthors, 2017: Observations of severe local storms and tornadoes with the Atmospheric Imaging Radar. Bull. Amer. Meteor. Soc., 98, 915935, https://doi.org/10.1175/BAMS-D-15-00266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., P. L. Heinselman, and M. Austin, 2015: 31 May 2013 El Reno tornadoes: Advantages of rapid-scan phased-array radar data from a warning forecaster’s perspective. Wea. Forecasting, 30, 933956, https://doi.org/10.1175/WAF-D-14-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., P. L. Heinselman, and T. J. Schuur, 2016: Rapid-update radar observations of downbursts occurring within an intense multicell thunderstorm on 14 June 2011. Wea. Forecasting, 31, 827851, https://doi.org/10.1175/WAF-D-15-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., J. C. Snyder, T. J. Schuur, T. T. Lindley, P. L. Heinselman, J. C. Furtado, J. W. Brogden, and R. Toomey, 2019: Rapid-update radar observations of ZDR column depth and its use in the warning decision process. Wea. Forecasting, 34, 11731188, https://doi.org/10.1175/WAF-D-19-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, G. J. Stumpf, and K. Hondl, 2007: The Warning Decision Support System–Integrated Information. Wea. Forecasting, 22, 592608, https://doi.org/10.1175/WAF1009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197, https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., R. J. Donaldson, D. W. Burgess, and R. A. Brown, 1977: Doppler radar application to severe thunderstorm study and potential real-time warning. Bull. Amer. Meteor. Soc., 58, 11871193, https://doi.org/10.1175/1520-0477(1977)058<1187:DRATST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R. M., 1964: Doppler radars as severe storm sensors. Bull. Amer. Meteor. Soc., 45, 587596, https://doi.org/10.1175/1520-0477-45.9.587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130, 852876, https://doi.org/10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., and Coauthors, 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971818, https://doi.org/10.1175/2009BAMS2507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molthan, A. L., J. R. Bell, T. A. Cole, and J. E. Burks, 2014: Satellite-based identification of tornado damage tracks from the 27 April 2011 severe weather outbreak. J. Oper. Meteor., 2, 191208, https://doi.org/10.15191/nwajom.2014.0216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA Comprehensive Large Array-Data Stewardship System (CLASS), 2016: GOES Satellite Data–Imager (GVAR_IMG) Archive. NOAA, accessed 4 February 2017, https://www.avl.class.noaa.gov/saa/products/search?datatype_family=GVAR_IMG.

  • NOAA/NWS Radar Operations Center, 1991: NOAA Next Generation Radar (NEXRAD) Level 2 Base Data. NOAA/National Centers for Environmental Information, subset used: 9–10 May 2016, accessed 9 September 2016, https://doi.org/10.7289/V5W9574V.

    • Crossref
    • Export Citation
  • OFCM, 2016: WSR-88D meteorological observations. Part A: System concepts, responsibilities, and procedures. Federal Meteorological Handbook 11, U.S. Department of Commerce/NOAA, FCM-H11A-2016, 25 pp., https://www.ofcm.gov/publications/fmh/FMH11/2016FMH11PTA.pdf.

  • Oliveira, M. I., M. Xue, B. J. Roberts, L. J. Wicker, and N. Yussouf, 2019: Horizontal vortex tubes near a simulated tornado: Three-dimensional structure and kinematics. Atmosphere, 10, 716, https://doi.org/10.3390/atmos10110716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 4568, https://doi.org/10.1175/BAMS-D-15-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pazmany, A. L., J. B. Mead, H. B. Bluestein, J. C. Snyder, and J. B. Houser, 2013: A mobile rapid-scanning X-band polarimetric (RaXPol) Doppler radar system. J. Atmos. Oceanic Technol., 30, 13981413, https://doi.org/10.1175/JTECH-D-12-00166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinhart, A. E., and D. M. Kingfield, 2018: The role of WSR-88D VCPs and intra-volume scanning strategies on volumetric analyses of thunderstorm intensity using simulation observations. 29th Conf. on Weather Analysis and Forecasting, Denver, CO, Amer. Meteor. Soc., 11A.1, https://ams.confex.com/ams/29WAF25NWP/webprogram/Paper345509.html.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, https://doi.org/10.1175/JAM2235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scharfenberg, K. A., and Coauthors, 2005: The Joint Polarization Experiment: Polarimetric radar in forecasting and warning decision making. Wea. Forecasting, 20, 775788, https://doi.org/10.1175/WAF881.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., and Coauthors, 2012: Dual-polarization tornadic debris signatures. Part I: Examples and utility in an operational setting. Electron. J. Oper. Meteor., 13, 120137, http://nwafiles.nwas.org/ej/pdf/2012-EJ9.pdf.

    • Search Google Scholar
    • Export Citation
  • Scofield, R. A., and J. F. W. Purdom, 1986: The use of satellite data for mesoscale analyses and forecasting applications. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 118150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., and H. B. Bluestein, 2014: Some considerations for the use of high-resolution mobile radar data in tornado intensity determination. Wea. Forecasting, 29, 799827, https://doi.org/10.1175/WAF-D-14-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., and A. V. Ryzhkov, 2015: Automated detection of polarimetric tornadic debris signatures using a hydrometeor classification algorithm. J. Appl. Meteor. Climatol., 54, 18611870, https://doi.org/10.1175/JAMC-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, G. Zhang, and S. J. Frasier, 2010: Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27, 19792001, https://doi.org/10.1175/2010JTECHA1356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, V. Venkatesh, and S. Frasier, 2013: Observations of polarimetric signatures in supercells by an X-band mobile Doppler radar. Mon. Wea. Rev., 141, 329, https://doi.org/10.1175/MWR-D-12-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., A. V. Ryzhkov, M. R. Kumjian, A. P. Khain, and J. Picca, 2015: A ZDR column detection algorithm to examine convective storm updrafts. Wea. Forecasting, 30, 18191844, https://doi.org/10.1175/WAF-D-15-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., and P. L. Heinselman, 2016: Rapid-scan, polarimetric observations of central Oklahoma severe storms on 31 May 2013. Wea. Forecasting, 31, 1942, https://doi.org/10.1175/WAF-D-15-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., A. T. LaFleur, M. Sharma, S. J. Frasier, W. Heberling, and C. Wolsieffer, 2018: Observations of severe storms by a novel, polarimetric, phased array mobile radar. 29th Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc., 15.4, https://ams.confex.com/ams/29SLS/webprogram/Paper348420.html.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and R. Edwards, 2000: An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea. Forecasting, 15, 682699, https://doi.org/10.1175/1520-0434(2000)015<0682:AOOECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., 1999: Observations of nontornadic low-level mesocyclones and attendant tornadogenesis failure during VORTEX. Mon. Wea. Rev., 127, 16931705, https://doi.org/10.1175/1520-0493(1999)127<1693:OONLLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., 2015: Polarimetric tornadic debris signature variability and debris fallout signatures. J. Appl. Meteor. Climatol., 54, 23892405, https://doi.org/10.1175/JAMC-D-15-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., and S. T. Jauernic, 2014: Spatial and temporal characteristics of polarimetric tornadic debris signatures. J. Appl. Meteor. Climatol., 53, 22172231, https://doi.org/10.1175/JAMC-D-14-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wade, A. R., M. C. Coniglio, and C. L. Ziegler, 2018: Comparison of near- and far-field supercell inflow environments using radiosonde observations. Mon. Wea. Rev., 146, 24032415, https://doi.org/10.1175/MWR-D-17-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., N. T. Atkins, K. M. Butler, H. B. Bluestein, K. Thiem, J. Snyder, and J. Houser, 2015: Photogrammetric analysis of the 2013 El Reno tornado combined with mobile X-band polarimetric radar data. Mon. Wea. Rev., 143, 26572683, https://doi.org/10.1175/MWR-D-15-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and Coauthors, 2016: Aerial damage survey of the 2013 El Reno tornado combined with mobile radar data. Mon. Wea. Rev., 144, 17491776, https://doi.org/10.1175/MWR-D-15-0367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, M. E., J. Y. Cho, J. S. Herd, J. M. Flavin, W. E. Benner, and G. S. Torok, 2007: The next-generation multimission U.S. surveillance radar network. Bull. Amer. Meteor. Soc., 88, 17391752, https://doi.org/10.1175/BAMS-88-11-1739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, R. M. Wakimoto, and N. A. Crook, 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev., 125, 505526, https://doi.org/10.1175/1520-0493(1997)125<0505:HCRDTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., T. W. Horst, and J. W. Wilson, 1999: An observational study of the evolution of horizontal convective rolls. Mon. Wea. Rev., 127, 21602179, https://doi.org/10.1175/1520-0493(1999)127<2160:AOSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., J. L. Schroeder, J. Guynes, P. S. Skinner, and J. Beck, 2009: The TTUKa mobile Doppler radar: Coordinated radar and in situ measurements of supercell thunderstorms during Project VORTEX2. 34th Conf. on Radar Meteor., Williamsburg, VA, Amer. Meteor. Soc. 11B.2, http://ams.confex.com/ams/34Radar/techprogram/paper_155425.htm.

    • Search Google Scholar
    • Export Citation
  • Wilson, K. A., P. L. Heinselman, C. M. Kuster, D. M. Kingfield, and Z. Kang, 2017a: Forecaster performance and workload: Does radar update time matter? Wea. Forecasting, 32, 253274, https://doi.org/10.1175/WAF-D-16-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, K. A., P. L. Heinselman, and C. M. Kuster, 2017b: Considerations for phased-array radar data use within the National Weather Service. Wea. Forecasting, 32, 19591965, https://doi.org/10.1175/WAF-D-17-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., D. W. Burgess, A. Seimon, J. T. Allen, J. C. Snyder, and H. B. Bluestein, 2018: Rapid-scan radar observations of an Oklahoma tornadic hailstorm producing giant hail. Wea. Forecasting, 33, 12631282, https://doi.org/10.1175/WAF-D-18-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfinbarger, M., J. R. Greenfield, T. A. Cannon, and W. G. McPherson Jr., 2004: WeatherScope: A streamlined display application for geographic weather data. Preprints, 20th Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Boulder, CO, Amer. Meteor. Soc., 13.3, https://ams.confex.com/ams/84Annual/techprogram/paper_73640.htm.

  • Wood, V. T., and R. A. Brown, 1997: Effects of radar sampling on single-Doppler velocity signatures of mesocyclones and tornadoes. Wea. Forecasting, 12, 928938, https://doi.org/10.1175/1520-0434(1997)012<0928:EORSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WSEC, 2006: A recommendation for an enhanced Fujita scale (EF-scale). Texas Tech University Wind Science and Engineering Center Rep., 108 pp.

  • Wurman, J., and K. Kosiba, 2013: Finescale radar observations of tornado and mesocyclone structures. Wea. Forecasting, 28, 11571174, https://doi.org/10.1175/WAF-D-12-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 15021512, https://doi.org/10.1175/1520-0426(1997)014<1502:DADOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. Bluestein, 2012: The second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, https://doi.org/10.1175/BAMS-D-11-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, M., M. Dickens-Micozzi, and M. A. Magsig, 2002: Analysis of tornado damage tracks from the 3 May tornado outbreak using multispectral satellite imagery. Wea. Forecasting, 17, 382398, https://doi.org/10.1175/1520-0434(2002)017<0382:AOTDTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 139 139 29
Full Text Views 39 39 9
PDF Downloads 33 33 9

An Analysis of an Ostensible Anticyclonic Tornado from 9 May 2016 Using High-Resolution, Rapid-Scan Radar Data

View More View Less
  • 1 NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma
  • 2 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • 3 NOAA/OAR National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • 4 School of Meteorology, University of Oklahoma, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

Tornadic supercells moved across parts of Oklahoma on the afternoon and evening of 9 May 2016. One such supercell, while producing a long-lived tornado, was observed by nearby WSR-88D radars to contain a strong anticyclonic velocity couplet on the lowest elevation angle. This couplet was located in a very atypical position relative to the ongoing cyclonic tornado and to the supercell’s updraft. A storm survey team identified damage near where this couplet occurred, and, in the absence of evidence refuting otherwise, the damage was thought to have been produced by an anticyclonic tornado. However, such a tornado was not seen in near-ground, high-resolution radar data from a much closer, rapid-scan, mobile radar. Rather, an elongated velocity couplet was observed only at higher elevation angles at altitudes similar to those at which the WSR-88D radars observed the strong couplet. This paper examines observations from two WSR-88D radars and a mobile radar from which it is argued that the anticyclonic couplet (and a similar one ~10 min later) were actually quasi-horizontal vortices centered ~1–1.5 km AGL. The benefits of having data from a radar much closer to the convective storm being sampled (e.g., better spatial resolution and near-ground data coverage) and providing more rapid volume updates are readily apparent. An analysis of these additional radar data provides strong, but not irrefutable, evidence that the anticyclonic tornado that may be inferred from WSR-88D data did not exist; consequently, upon discussions with the National Weather Service, it was not included in Storm Data.

Significance Statement

The official nationwide radar network in the United States is capable of detecting some tornadoes, but this capability generally decreases with increasing distance from the radar. In this study, we examined two peculiar radar signatures observed in a tornado-producing thunderstorm in Oklahoma in May 2016. These signatures looked similar to those seen in anticyclonic (i.e., clockwise-rotating in the Northern Hemisphere) tornadoes, but the location within the storm would have been highly unusual for a tornado. Data from a rapid-scan mobile radar closer to the storm revealed that the signatures were not from anticyclonic tornadoes but, rather, may have been quasi-horizontal vortices centered ~1 km above ground. This case serves as an example of the benefits expected from a denser radar network of next-generation, rapid-scan weather radars.

Current affiliation: Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois.

Corresponding author: Jeffrey Snyder, jeffrey.snyder@noaa.gov

Abstract

Tornadic supercells moved across parts of Oklahoma on the afternoon and evening of 9 May 2016. One such supercell, while producing a long-lived tornado, was observed by nearby WSR-88D radars to contain a strong anticyclonic velocity couplet on the lowest elevation angle. This couplet was located in a very atypical position relative to the ongoing cyclonic tornado and to the supercell’s updraft. A storm survey team identified damage near where this couplet occurred, and, in the absence of evidence refuting otherwise, the damage was thought to have been produced by an anticyclonic tornado. However, such a tornado was not seen in near-ground, high-resolution radar data from a much closer, rapid-scan, mobile radar. Rather, an elongated velocity couplet was observed only at higher elevation angles at altitudes similar to those at which the WSR-88D radars observed the strong couplet. This paper examines observations from two WSR-88D radars and a mobile radar from which it is argued that the anticyclonic couplet (and a similar one ~10 min later) were actually quasi-horizontal vortices centered ~1–1.5 km AGL. The benefits of having data from a radar much closer to the convective storm being sampled (e.g., better spatial resolution and near-ground data coverage) and providing more rapid volume updates are readily apparent. An analysis of these additional radar data provides strong, but not irrefutable, evidence that the anticyclonic tornado that may be inferred from WSR-88D data did not exist; consequently, upon discussions with the National Weather Service, it was not included in Storm Data.

Significance Statement

The official nationwide radar network in the United States is capable of detecting some tornadoes, but this capability generally decreases with increasing distance from the radar. In this study, we examined two peculiar radar signatures observed in a tornado-producing thunderstorm in Oklahoma in May 2016. These signatures looked similar to those seen in anticyclonic (i.e., clockwise-rotating in the Northern Hemisphere) tornadoes, but the location within the storm would have been highly unusual for a tornado. Data from a rapid-scan mobile radar closer to the storm revealed that the signatures were not from anticyclonic tornadoes but, rather, may have been quasi-horizontal vortices centered ~1 km above ground. This case serves as an example of the benefits expected from a denser radar network of next-generation, rapid-scan weather radars.

Current affiliation: Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois.

Corresponding author: Jeffrey Snyder, jeffrey.snyder@noaa.gov
Save