• Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824, https://doi.org/10.1175/2008MWR2691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J., S. A. Michelson, and E. D. Grell, 2019: Microphysical process comparison of three microphysics parameterization schemes in the WRF Model for an idealized squall-line case study. Mon. Wea. Rev., 147, 30933120, https://doi.org/10.1175/MWR-D-18-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, Y. R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, L. K., W. I. Gustafson, E. I. Kassianov, and L. Deng, 2013: Evaluation of a modified scheme for shallow convection: Implementation of CuP and case studies. Mon. Wea. Rev., 141, 134147, https://doi.org/10.1175/MWR-D-12-00136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlin, J. T., J. Gao, J. C. Snyder, and A. V. Ryzhkov, 2017: Assimilation of ZDR columns for improving the spinup and forecast of convective storms in storm-scale models: Proof-of-concept experiments. Mon. Wea. Rev., 145, 50335057, https://doi.org/10.1175/MWR-D-17-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, R., R. Yu, Y. Fu, and Y. Xu, 2011: Impact of cloud microphysical processes on the simulation of Typhoon Rananim near shore. Part I: Cloud structure and precipitation features. Acta Meteor. Sin., 25, 441455, https://doi.org/10.1007/s13351-011-0405-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., J. N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671387, https://doi.org/10.1002/qj.49712051912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., and et al. , 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart. J. Roy. Meteor. Soc., 124, 17831807, https://doi.org/10.1002/qj.49712455002.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., Y. Jin, Y. Lin, T. Black, E. Rogers, and G. DiMego, 2002: Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model. 19th Conf. on Weather Analysis and Forecasting/15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 10.1, https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47241.htm .

  • Fovell, R. G., K. L. Corbosiero, and H. Kuo, 2009: Cloud microphysics impact on hurricane track as revealed in idealized experiments. J. Atmos. Sci., 66, 17641778, https://doi.org/10.1175/2008JAS2874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., and D. J. Stensrud, 2012: Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification. J. Atmos. Sci., 69, 10541065, https://doi.org/10.1175/JAS-D-11-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457469, https://doi.org/10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2014: Extracting microphysical impacts in large-eddy simulations of shallow convection. J. Atmos. Sci., 71, 44934499, https://doi.org/10.1175/JAS-D-14-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S., and J. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsiao, L., D. Chen, Y. Kuo, Y. Guo, T. Yeh, J. Hong, C. Fong, and C. Lee, 2012: Application of WRF 3DVAR to operational typhoon prediction in Taiwan: Impact of outer loop and partial cycling approaches. Wea. Forecasting, 27, 12491263, https://doi.org/10.1175/WAF-D-11-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illari, L., 1987: The spin-up problem. ECMWF Tech. Memo. 137, 33 pp., https://doi.org/10.21957/ucq8y9b3c.

    • Crossref
    • Export Citation
  • James, C., and R. Houze Jr., 2001: A real-time four-dimensional Doppler dealiasing scheme. J. Atmos. Oceanic Technol., 18, 16741683, https://doi.org/10.1175/1520-0426(2001)018<1674:ARTFDD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawabata, T., T. Schwitalla, A. Adachi, H. S. Bauer, V. Wulfmeyer, N. Nagumo, and H. Yamauchi, 2018: Observational operators for dual polarimetric radars in variational data assimilation systems (PolRad VAR v1.0). Geosci. Model Dev., 11, 24932501, https://doi.org/10.5194/gmd-11-2493-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, R., M. Xue, and C. Liu, 2018: Development of a hybrid En3DVar data assimilation system and comparisons with 3DVar and EnKF for radar data assimilation with observing system simulation experiments. Mon. Wea. Rev., 146, 175198, https://doi.org/10.1175/MWR-D-17-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., J. R. Mecikalski, and D. Posselt, 2017: An ice-phase microphysics forward model and preliminary results of polarimetric radar data assimilation. Mon. Wea. Rev., 145, 683708, https://doi.org/10.1175/MWR-D-16-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, K. S., and S. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, https://doi.org/10.1175/2009MWR2968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, C., S. Vasić, A. Kilambi, B. Turner, and I. Zawadzki, 2005: Precipitation forecast skill of numerical weather prediction models and radar nowcasts. Geophys. Res. Lett., 32, L14801, https://doi.org/10.1029/2005GL023451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., 1993: Digital filters for numerical weather prediction. HIRLAM Tech. Rep. 10, 42 pp., http://mathsci.ucd.ie/~plynch/Publications/HIRLAM_Tech_Report_10.pdf.

  • Machado, L. A. T., and W. B. Rossow, 1993: Structural characteristics and radiative properties of tropical cloud clusters. Mon. Wea. Rev., 121, 32343260, https://doi.org/10.1175/1520-0493(1993)121<3234:SCARPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., and H. Laurent, 2004: The convective system area expansion over Amazonia and its relationships with convective system life duration and high-level wind divergence. Mon. Wea. Rev., 132, 714725, https://doi.org/10.1175/1520-0493(2004)132<0714:TCSAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., and et al. , 2014: The CHUVA Project: How does convection vary across Brazil? Bull. Amer. Meteor. Soc., 95, 13651380, https://doi.org/10.1175/BAMS-D-13-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, https://doi.org/10.1175/JAS3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, K.-H., Y. Kim, K. Park, and G. Lee, 2017: Assimilation of null-echo from radar observations for short-term precipitation forecasting. 28th Conf.on Weather Analysis and Forecasting / 24th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 1161, https://ams.confex.com/ams/97Annual/webprogram/Paper304184.html.

  • Ming, C., S. Y. Fan, J. Zhong, X. Y. Huang, Y. R. Guo, W. Wang, Y. Wang, and B. A. Kuo 2009: A WRF-based rapid updating cycling forecast system of BMB and its performance during the summer and Olympic Games 2008. World Meteorological Organization Symp. on Nowcasting and Very Short Term Forecasting, Whistler, BC, Canada, WMO, 6 pp., https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.496.8761&rep=rep1&type=pdf.

  • Mohan, P. R., C. V. Srinivas, V. Yesubabu, R. Baskaran, and B. Venkatraman, 2019: Tropical cyclone simulations over Bay of Bengal with ARW model: Sensitivity to cloud microphysics schemes. Atmos. Res., 230, 104651, https://doi.org/10.1016/j.atmosres.2019.104651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Y., and M. Wang, 2019: Impact of the assimilation frequency of radar data with the ARPS 3DVar and cloud analysis system on forecasts of a squall line in southern China. Adv. Atmos. Sci., 36, 160172, https://doi.org/10.1007/s00376-018-8087-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763, https://doi.org/10.1175/1520-0493(1992)120,1747:TNMCSS.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putnam, B. J., M. Xue, Y. Jung, N. A. Snook, and G. Zhang, 2017: Ensemble probabilistic prediction of a mesoscale convective system and associated polarimetric radar variables using single-moment and double-moment microphysics schemes and EnKF radar data assimilation. Mon. Wea. Rev., 145, 22572279, https://doi.org/10.1175/MWR-D-16-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneebeli, M., J. Sakuragi, T. Biscaro, C. F. Angelis, I. Carvalho da Costa, C. Morales, L. Baldini, and L. A. T. Machado, 2012: Polarimetric X-band weather radar measurements in the tropics: Radome and rain attenuation correction. Atmos. Meas. Tech., 5, 21832199, https://doi.org/10.5194/amt-5-2183-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skok, G., and N. Roberts, 2016: Analysis of Fractions Skill Score properties for random precipitation fields and ECMWF forecasts. Quart. J. Roy. Meteor. Soc., 142, 25992610, https://doi.org/10.1002/qj.2849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokol, Z., 2011: Assimilation of extrapolated radar reflectivity into a NWP model and its impact on a precipitation forecast at high resolution. Atmos. Res., 100, 201212, https://doi.org/10.1016/j.atmosres.2010.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and et al. , 2013: Progress and challenges with warn-on-forecast. Atmos. Res., 123, 216, https://doi.org/10.1016/j.atmosres.2012.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and et al. , 2014: Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Amer. Meteor. Soc., 95, 409426, https://doi.org/10.1175/BAMS-D-11-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., H. Wang, W. Tong, Y. Zhang, C. Lin, and D. Xu, 2016: Comparison of the impacts of momentum control variables on high-resolution variational data assimilation and precipitation forecasting. Mon. Wea. Rev., 144, 149169, https://doi.org/10.1175/MWR-D-14-00205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356, https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and et al. , 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting /16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2A, https://ams.confex.com/ams/pdfpapers/69061.pdf.

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, W., G. Li, J. Sun, X. Tang, and Y. Zhang, 2016: Design strategies of an hourly update 3DVAR data assimilation system for improved convective forecasting. Wea. Forecasting, 31, 16731695, https://doi.org/10.1175/WAF-D-16-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trémolet, Y., 2008: Computation of observation sensitivity and observation impact in incremental variational data assimilation. Tellus, 60A, 964978, https://doi.org/10.1111/j.1600-0870.2008.00349.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vendrasco, E. P., J. Sun, D. L. Herdies, and C. F. de Angelis, 2016: Constraining a 3DVAR radar data assimilation system with large-scale analysis to improve short-range precipitation forecasts. J. Appl. Meteor. Climatol., 55, 673690, https://doi.org/10.1175/JAMC-D-15-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Sun, S. Fan, and X. Huang, 2013: Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events. J. Appl. Meteor. Climatol., 52, 889902, https://doi.org/10.1175/JAMC-D-12-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfensberger, D., and A. Berne, 2018: From model to radar variables: A new forward polarimetric radar operator for COSMO. Atmos. Meas. Tech., 11, 38833916, https://doi.org/10.5194/amt-11-3883-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D., X. Dong, B. Xi, Z. Feng, A. Kennedy, G. Mullendore, M. Gilmore, and W. Tao, 2013: Impacts of microphysical scheme on convective and stratiform characteristics in two high precipitation squall line events. J. Geophys. Res. Atmos., 118, 11 11911 135, https://doi.org/10.1002/jgrd.50798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y. Kuo, J. Sun, W. Lee, D. M. Barker, and E. Lim, 2007: An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteor. Climatol., 46, 1422, https://doi.org/10.1175/JAM2439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., E. R. Mansell, L. J. Wicker, D. M. Wheatley, and D. J. Stensrud, 2013: The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell storm using single- and double-moment microphysics schemes. Mon. Wea. Rev., 141, 33883412, https://doi.org/10.1175/MWR-D-12-00237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E., 1990: Rainfall predictability: When will extrapolation-based algorithms fail? Eighth Conf. on Hydrometeorology, Calgary, AB, Canada, Amer. Meteor. Soc., 138–142.

All Time Past Year Past 30 Days
Abstract Views 246 246 24
Full Text Views 78 78 3
PDF Downloads 105 105 2

Cloud-Resolving Model Applied to Nowcasting: An Evaluation of Radar Data Assimilation and Microphysics Parameterization

View More View Less
  • 1 Center for Weather Forecast and Climate Studies, National Institute for Space Research (CPTEC/INPE), Cachoeira Paulista, São Paulo, Brazil
  • | 2 Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
  • | 3 Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York
  • | 4 Institute of Astronomy, Geophysics and Atmospheric Sciences, University of Sao Paulo (IAG/USP), São Paulo, Brazil
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This research explores the benefits of radar data assimilation for short-range weather forecasts in southeastern Brazil using the Weather Research and Forecasting (WRF) Model’s three-dimensional variational data assimilation (3DVAR) system. Different data assimilation options are explored, including the cycling frequency, the number of outer loops, and the use of null-echo assimilation. Initially, four microphysics parameterizations are evaluated (Thompson, Morrison, WSM6, and WDM6). The Thompson parameterization produces the best results, while the other parameterizations generally overestimate the precipitation forecast, especially WDSM6. Additionally, the Thompson scheme tends to overestimate snow, while the Morrison scheme overestimates graupel. Regarding the data assimilation options, the results deteriorate and more spurious convection occurs when using a higher cycling frequency (i.e., 30 min instead of 60 min). The use of two outer loops produces worse precipitation forecasts than the use of one outer loop, and the null-echo assimilation is shown to be an effective way to suppress spurious convection. However, in some cases, the null-echo assimilation also removes convective clouds that are not observed by the radar and/or are still not producing rain, but have the potential to grow into an intense convective cloud with heavy rainfall. Finally, a cloud convective mask was implemented using ancillary satellite data to prevent null-echo assimilation from removing potential convective clouds. The mask was demonstrated to be beneficial in some circumstances, but it needs to be carefully evaluated in more cases to have a more robust conclusion regarding its use.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eder Paulo Vendrasco, eder.vendrasco@inpe.br

Abstract

This research explores the benefits of radar data assimilation for short-range weather forecasts in southeastern Brazil using the Weather Research and Forecasting (WRF) Model’s three-dimensional variational data assimilation (3DVAR) system. Different data assimilation options are explored, including the cycling frequency, the number of outer loops, and the use of null-echo assimilation. Initially, four microphysics parameterizations are evaluated (Thompson, Morrison, WSM6, and WDM6). The Thompson parameterization produces the best results, while the other parameterizations generally overestimate the precipitation forecast, especially WDSM6. Additionally, the Thompson scheme tends to overestimate snow, while the Morrison scheme overestimates graupel. Regarding the data assimilation options, the results deteriorate and more spurious convection occurs when using a higher cycling frequency (i.e., 30 min instead of 60 min). The use of two outer loops produces worse precipitation forecasts than the use of one outer loop, and the null-echo assimilation is shown to be an effective way to suppress spurious convection. However, in some cases, the null-echo assimilation also removes convective clouds that are not observed by the radar and/or are still not producing rain, but have the potential to grow into an intense convective cloud with heavy rainfall. Finally, a cloud convective mask was implemented using ancillary satellite data to prevent null-echo assimilation from removing potential convective clouds. The mask was demonstrated to be beneficial in some circumstances, but it needs to be carefully evaluated in more cases to have a more robust conclusion regarding its use.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eder Paulo Vendrasco, eder.vendrasco@inpe.br
Save