• Aligo, E. A., B. Ferrier, and J. R. Carley, 2018: Modified NAM microphysics for forecasts of deep convective storms. Mon. Wea. Rev., 146, 41154153, https://doi.org/10.1175/MWR-D-17-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arribas, A., K. B. Robertson, and K. R. Mylne, 2005: Test of a poor man’s ensemble prediction system for short-range probability forecasting. Mon. Wea. Rev., 133, 18251839, https://doi.org/10.1175/MWR2911.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casanova, S., and B. Ahrens, 2009: On the weighting of multimodel ensembles in seasonal and short-range weather forecasting. Mon. Wea. Rev., 137, 38113822, https://doi.org/10.1175/2009MWR2893.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., 2019: Comparisons of QPFs derived from single- and multi-core convection-allowing ensembles. Wea. Forecasting, 34, 19551964, https://doi.org/10.1175/WAF-D-19-0128.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, and T.-C. Chen, 2008: Contributions of mixed physics versus perturbed initial/lateral boundary conditions to ensemble-based precipitation forecast skill. Mon. Wea. Rev., 136, 21402156, https://doi.org/10.1175/2007MWR2029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed experimental forecast program spring experiment. Bull. Amer. Meteor. Soc., 93, 5574, https://doi.org/10.1175/BAMS-D-11-00040.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2018: The Community Leveraged Unified Ensemble (CLUE) in the 2016 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Bull. Amer. Meteor. Soc., 99, 14331448, https://doi.org/10.1175/BAMS-D-16-0309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and Coauthors, 2016: Development of a High-Resolution Rapid Refresh Ensemble (HRRRE) for severe weather forecasting. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 8B.2, https://ams.confex.com/ams/28SLS/webprogram/Paper301555.html.

  • Du, J., S. L. Mullen, and F. Sanders, 1997: Short-range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125, 24272459, https://doi.org/10.1175/1520-0493(1997)125<2427:SREFOQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, J. D., and W. A. Gallus, 2010: Spring and summer Midwestern severe weather reports in supercells compared to other morphologies. Wea. Forecasting, 25, 190206, https://doi.org/10.1175/2009WAF2222338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, J. D., X. Wang, F. Kong, and M. Xue, 2014: Using varied microphysics to account for uncertainty in warm-season QPF in a convection-allowing ensemble. Mon. Wea. Rev., 142, 21982219, https://doi.org/10.1175/MWR-D-13-00297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, J. D., X. Wang, and M. Xue, 2017: Sensitivity of convection-allowing forecasts to land surface model perturbations and implications for ensemble design. Mon. Wea. Rev., 145, 20012025, https://doi.org/10.1175/MWR-D-16-0349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 24612480, https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckel, F. A., and C. F. Mass, 2005: Aspects of effective mesoscale, short-range ensemble forecasting. Wea. Forecasting, 20, 328350, https://doi.org/10.1175/WAF843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., W. Wang, and E. Colon, 2011: Evaluating cloud microphysics schemes in nested NMMB forecasts. 24th Conf. on Weather and Forecasting/20th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14B.1, https://ams.confex.com/ams/91Annual/webprogram/Paper179488.html.

  • Fowler, T., J. Halley Gotway, K. Newman, T. L. Jensen, B. G. Brown, and R. G. Bullock, 2017: The Model Evaluation Tools v7.0 (METv7.0) user’s guide. Tech. Rep., Developmental Testbed Center, 408 pp., https://dtcenter.org/sites/default/files/community-code/met/docs/user-guide/MET_Users_Guide_v7.0.pdf.

  • Gallo, B. T., A. J. Clark, and S. R. Dembek, 2016: Forecasting tornadoes using convection-permitting ensembles. Wea. Forecasting, 31, 273295, https://doi.org/10.1175/WAF-D-15-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., and Coauthors, 2017: Breaking new ground in severe weather prediction: The 2015 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Wea. Forecasting, 32, 15411568, https://doi.org/10.1175/WAF-D-16-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., B. Roberts, I. L. Jirak, A. J. Clark, C. P. Kalb, and T. L. Jensen, 2018: Evaluating potential future configurations of the High Resolution Ensemble Forecast system. 29th Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc., 76, https://ams.confex.com/ams/29SLS/webprogram/Paper348791.html.

  • Gallo, B. T., and Coauthors, 2019: Initial development and testing of a convection-allowing model scorecard. Bull. Amer. Meteor. Soc., 100, ES367ES384, https://doi.org/10.1175/BAMS-D-18-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasperoni, N. A., X. Wang, and Y. Wang, 2020: A comparison of methods to sample model errors for convection-allowing ensemble forecasts in the setting of multiscale initial conditions produced by the GSI-based EnVar assimilation system. Mon. Wea. Rev., 148, 11771203, https://doi.org/10.1175/MWR-D-19-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafsson, N., and Coauthors, 2018: Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres. Quart. J. Roy. Meteor. Soc., 144, 12181256, https://doi.org/10.1002/qj.3179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and Coauthors, 2011: The U.S. Air Force Weather Agency’s mesoscale ensemble: Scientific description and performance results. Tellus, 63A, 625641, https://doi.org/10.1111/j.1600-0870.2010.00497.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirt, M., S. Rasp, U. Blahak, and G. C. Craig, 2019: Stochastic parameterization of processes leading to convective initiation in kilometer-scale models. Mon. Wea. Rev., 147, 39173934, https://doi.org/10.1175/MWR-D-19-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchens, N. M., H. E. Brooks, and M. P. Kay, 2013: Objective limits on forecasting skill of rare events. Wea. Forecasting, 28, 525534, https://doi.org/10.1175/WAF-D-12-00113.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopson, T. M., and P. J. Webster, 2010: A 1–10-day ensemble forecasting scheme for the major river basins of Bangladesh: Forecasting severe floods of 2003–07. J. Hydrometeor., 11, 618641, https://doi.org/10.1175/2009JHM1006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, W., and A. H. Murphy, 1986: The attributes diagram: A geometrical framework for assessing the quality of probability forecasts. Int. J. Forecasting, 2, 285293, https://doi.org/10.1016/0169-2070(86)90048-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z., and R. L. Gall, 2012: Scientific documentation of the NCEP nonhydrostatic multiscale model on the B grid (NMMB). Part 1: Dynamics. NCAR Tech. Note NCAR/TN-489+STR, 75 pp., https://doi.org/10.5065/D6WH2MZX.

    • Crossref
    • Export Citation
  • Jankov, I., W. A. Gallus, M. Segal, B. Shaw, and S. E. Koch, 2005: The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall. Wea. Forecasting, 20, 10481060, https://doi.org/10.1175/WAF888.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jankov, I., J. Beck, J. Wolff, M. Harrold, J. B. Olson, T. Smirnova, C. Alexander, and J. Berner, 2019: Stochastically perturbed parameterizations in an HRRR-based ensemble. Mon. Wea. Rev., 147, 153173, https://doi.org/10.1175/MWR-D-18-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jirak, I. L., S. J. Weiss, and C. J. Melick, 2012: The SPC storm-scale ensemble of opportunity: Overview and results from the 2012 Hazardous Weather Testbed Spring Forecasting Experiment. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., P9.137, https://ams.confex.com/ams/26SLS/webprogram/Paper211729.html.

  • Jirak, I. L., C. J. Melick, and S. J. Weiss, 2015: Comparison of convection-allowing ensembles during the 2015 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. 40th Natl. Wea. Assoc., Annual Meeting, Oklahoma City, OK, AP-36, https://www.spc.noaa.gov/publications/jirak/camcomp.pdf.

  • Jirak, I. L., C. J. Melick, and S. J. Weiss, 2016: Comparison of the SPC storm-scale ensemble of opportunity to other convection-allowing ensembles for severe weather forecasting. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 102, https://ams.confex.com/ams/28SLS/webprogram/Paper300910.html.

  • Johnson, A., X. Wang, F. Kong, and M. Xue, 2011: Hierarchical cluster analysis of a convection-allowing ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part I: Development of the object-oriented cluster analysis method for precipitation fields. Mon. Wea. Rev., 139, 36733693, https://doi.org/10.1175/MWR-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, J. R. Carley, L. J. Wicker, and C. Karstens, 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. Mon. Wea. Rev., 143, 30873108, https://doi.org/10.1175/MWR-D-14-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, Y. Wang, A. Reinhart, A. J. Clark, and I. L. Jirak, 2020: Neighborhood- and object-based probabilistic verification of the OU MAP ensemble forecasts during 2017 and 2018 Hazardous Weather Testbeds. Wea. Forecasting, 35, 169191, https://doi.org/10.1175/WAF-D-19-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, C., and R. Swinbank, 2009: Medium-range multimodel ensemble combination and calibration. Quart. J. Roy. Meteor. Soc., 135, 777794, https://doi.org/10.1002/qj.383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., P. R. Janish, S. J. Weiss, M. E. Baldwin, R. S. Schneider, and H. E. Brooks, 2003: Collaboration between forecasters and research scientists at the NSSL and SPC: The Spring Program. Bull. Amer. Meteor. Soc., 84, 17971806, https://doi.org/10.1175/BAMS-84-12-1797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, F., and Coauthors, 2007: Preliminary analysis on the real-time Storm-Scale Ensemble Forecasts produced as a part of the NOAA Hazardous Weather Testbed 2007 Spring Experiment. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 3B.2, https://ams.confex.com/ams/pdfpapers/124667.pdf.

  • Leith, C. E., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102, 409418, https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levit, J. J., and Coauthors, 2008: The NOAA Hazardous Weather Testbed 2008 Spring Experiment: Technical and scientific challenges of creating a data visualization environment for storm-scale deterministic and ensemble forecasts. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., P10.5, https://ams.confex.com/ams/pdfpapers/141785.pdf.

  • Loken, E. D., A. J. Clark, M. Xue, and F. Kong, 2017: Comparison of next-day probabilistic severe weather forecasts from coarse- and fine-resolution CAMs and a convection-allowing ensemble. Wea. Forecasting, 32, 14031421, https://doi.org/10.1175/WAF-D-16-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loken, E. D., A. J. Clark, M. Xue, and F. Kong, 2019: Spread and skill in mixed- and single-physics convection-allowing ensembles. Wea. Forecasting, 34, 305330, https://doi.org/10.1175/WAF-D-18-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291303.

  • Mittermaier, M. P., 2007: Improving short-range high-resolution model precipitation forecast skill using time-lagged ensembles. Quart. J. Roy. Meteor. Soc., 133, 14871500, https://doi.org/10.1002/qj.135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and Coauthors, 2019: Systematic comparison of convection-allowing models during the 2017 NOAA HWT Spring Forecasting Experiment. Wea. Forecasting, 34, 13951416, https://doi.org/10.1175/WAF-D-19-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, B., I. L. Jirak, A. J. Clark, S. J. Weiss, and J. S. Kain, 2019: Postprocessing and visualization techniques for convection-allowing ensembles. Bull. Amer. Meteor. Soc., 100, 12451258, https://doi.org/10.1175/BAMS-D-18-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, J. Berner, K. R. Fossell, C. Snyder, J. L. Anderson, and M. L. Weisman, 2014: Representing forecast error in a convection-permitting ensemble system. Mon. Wea. Rev., 142, 45194541, https://doi.org/10.1175/MWR-D-14-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., 145, 33973418, https://doi.org/10.1175/MWR-D-16-0400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280, https://doi.org/10.1175/2009WAF2222267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, R. A. Sobash, K. R. Fossell, and M. L. Weisman, 2015: NCAR’s experimental real-time convection-allowing ensemble prediction system. Wea. Forecasting, 30, 16451654, https://doi.org/10.1175/WAF-D-15-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, H., and Coauthors, 2016: Bridging research to operations transitions: Status and plans of community GSI. Bull. Amer. Meteor. Soc., 97, 14271440, https://doi.org/10.1175/BAMS-D-13-00245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH .

    • Crossref
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., and J. S. Kain, 2017: Seasonal variations in severe weather forecast skill in an experimental convection-allowing model. Wea. Forecasting, 32, 18851902, https://doi.org/10.1175/WAF-D-17-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., J. S. Kain, D. R. Bright, A. R. Dean, M. C. Coniglio, and S. J. Weiss, 2011: Probabilistic forecast guidance for severe thunderstorms based on the identification of extreme phenomena in convection-allowing model forecasts. Wea. Forecasting, 26, 714728, https://doi.org/10.1175/WAF-D-10-05046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., G. S. Romine, C. S. Schwartz, D. J. Gagne, and M. L. Weisman, 2016a: Explicit forecasts of low-level rotation from convection-allowing models for next-day tornado prediction. Wea. Forecasting, 31, 15911614, https://doi.org/10.1175/WAF-D-16-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., C. S. Schwartz, G. S. Romine, K. R. Fossell, and M. L. Weisman, 2016b: Severe weather prediction using storm surrogates from an ensemble forecasting system. Wea. Forecasting, 31, 255271, https://doi.org/10.1175/WAF-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., C. S. Schwartz, G. S. Romine, and M. L. Weisman, 2019: Next-day prediction of tornadoes using convection-allowing models with 1-km horizontal grid spacing. Wea. Forecasting, 34, 11171135, https://doi.org/10.1175/WAF-D-19-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J.-W. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 20772107, https://doi.org/10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voisin, N., J. C. Schaake, and D. P. Lettenmaier, 2010: Calibration and downscaling methods for quantitative ensemble precipitation forecasts. Wea. Forecasting, 25, 16031627, https://doi.org/10.1175/2010WAF2222367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., 2010: Incorporating ensemble covariance in the gridpoint statistical interpolation variational minimization: A mathematical framework. Mon. Wea. Rev., 138, 29902995, https://doi.org/10.1175/2010MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble-variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, https://doi.org/10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Wang, 2017: Direct assimilation of radar reflectivity without tangent linear and adjoint of the nonlinear observation operator in the GSI-based EnVar system: Methodology and experiment with the 8 May 2003 Oklahoma City tornadic supercell. Mon. Wea. Rev., 145, 14471471, https://doi.org/10.1175/MWR-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., X. Wang, J. R. Carley, and D. C. Dowell, 2018: Development and research of GSI based EnVar with direct radar data assimilation for the US NWS operational regional convection allowing modeling systems to improve convection-allowing hazardous weather forecast and results during the HWT Spring Experiments. 29th Conf. on Weather Analysis and Forecasting, Denver, CO, Amer. Meteor. Soc., 7A.4, https://ams.confex.com/ams/29WAF25NWP/webprogram/Paper345833.html.

  • Wastl, C., Y. Wang, A. Atencia, and C. Wittmann, 2019: A hybrid stochastically perturbed parametrization scheme in a convection-permitting ensemble. Mon. Wea. Rev., 147, 22172230, https://doi.org/10.1175/MWR-D-18-0415.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

    • Search Google Scholar
    • Export Citation
  • Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2007: CAPS realtime storm-scale ensemble and high-resolution forecasts as part of the NOAA Hazardous Weather Testbed 2007 spring experiment. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction. Park City, UT, Amer. Meteor. Soc., 3B.1, https://ams.confex.com/ams/pdfpapers/124587.pdf.

  • Ziehmann, C., 2000: Comparison of a single-model EPS with a multi-model ensemble consisting of a few operational models. Tellus, 52A, 280299, https://doi.org/10.3402/tellusa.v52i3.12266.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 136 136 19
Full Text Views 80 80 18
PDF Downloads 99 99 20

What Does a Convection-Allowing Ensemble of Opportunity Buy Us in Forecasting Thunderstorms?

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • 2 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • 3 NOAA/NCEP/Storm Prediction Center, Norman, Oklahoma
  • 4 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • 5 NOAA/OAR/Earth System Research Laboratory, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The High Resolution Ensemble Forecast v2.1 (HREFv2.1), an operational convection-allowing model (CAM) ensemble, is an “ensemble of opportunity” wherein forecasts from several independently designed deterministic CAMs are aggregated and postprocessed together. Multiple dimensions of diversity in the HREFv2.1 ensemble membership contribute to ensemble spread, including model core, physics parameterization schemes, initial conditions (ICs), and time lagging. In this study, HREFv2.1 forecasts are compared against the High Resolution Rapid Refresh Ensemble (HRRRE) and the Multiscale data Assimilation and Predictability (MAP) ensemble, two experimental CAM ensembles that ran during the 5-week Spring Forecasting Experiment (SFE) in spring 2018. The HRRRE and MAP are formally designed ensembles with spread achieved primarily through perturbed ICs. Verification in this study focuses on composite radar reflectivity and updraft helicity to assess ensemble performance in forecasting convective storms. The HREFv2.1 shows the highest overall skill for these forecasts, matching subjective real-time impressions from SFE participants. Analysis of the skill and variance of ensemble member forecasts suggests that the HREFv2.1 exhibits greater spread and more effectively samples model uncertainty than the HRRRE or MAP. These results imply that to optimize skill in forecasting convective storms at 1–2-day lead times, future CAM ensembles should employ either diverse membership designs or sophisticated perturbation schemes capable of representing model uncertainty with comparable efficacy.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Brett Roberts, brett.roberts@noaa.gov

Abstract

The High Resolution Ensemble Forecast v2.1 (HREFv2.1), an operational convection-allowing model (CAM) ensemble, is an “ensemble of opportunity” wherein forecasts from several independently designed deterministic CAMs are aggregated and postprocessed together. Multiple dimensions of diversity in the HREFv2.1 ensemble membership contribute to ensemble spread, including model core, physics parameterization schemes, initial conditions (ICs), and time lagging. In this study, HREFv2.1 forecasts are compared against the High Resolution Rapid Refresh Ensemble (HRRRE) and the Multiscale data Assimilation and Predictability (MAP) ensemble, two experimental CAM ensembles that ran during the 5-week Spring Forecasting Experiment (SFE) in spring 2018. The HRRRE and MAP are formally designed ensembles with spread achieved primarily through perturbed ICs. Verification in this study focuses on composite radar reflectivity and updraft helicity to assess ensemble performance in forecasting convective storms. The HREFv2.1 shows the highest overall skill for these forecasts, matching subjective real-time impressions from SFE participants. Analysis of the skill and variance of ensemble member forecasts suggests that the HREFv2.1 exhibits greater spread and more effectively samples model uncertainty than the HRRRE or MAP. These results imply that to optimize skill in forecasting convective storms at 1–2-day lead times, future CAM ensembles should employ either diverse membership designs or sophisticated perturbation schemes capable of representing model uncertainty with comparable efficacy.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Brett Roberts, brett.roberts@noaa.gov
Save