A Deep-Learning Model for Automated Detection of Intense Midlatitude Convection Using Geostationary Satellite Images

John L. Cintineo Cooperative Institute of Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by John L. Cintineo in
Current site
Google Scholar
PubMed
Close
,
Michael J. Pavolonis NOAA/NESDIS/Center for Satellite Applications and Research/Advanced Satellite Products Branch, Madison, Wisconsin

Search for other papers by Michael J. Pavolonis in
Current site
Google Scholar
PubMed
Close
,
Justin M. Sieglaff Cooperative Institute of Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Justin M. Sieglaff in
Current site
Google Scholar
PubMed
Close
,
Anthony Wimmers Cooperative Institute of Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Anthony Wimmers in
Current site
Google Scholar
PubMed
Close
,
Jason Brunner Cooperative Institute of Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Jason Brunner in
Current site
Google Scholar
PubMed
Close
, and
Willard Bellon Cooperative Institute of Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Willard Bellon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Intense thunderstorms threaten life and property, impact aviation, and are a challenging forecast problem, particularly without precipitation-sensing radar data. Trained forecasters often look for features in geostationary satellite images such as rapid cloud growth, strong and persistent overshooting tops, U- or V-shaped patterns in storm-top temperature (and associated above-anvil cirrus plumes), thermal couplets, intricate texturing in cloud albedo (e.g., “bubbling” cloud tops), cloud-top divergence, spatial and temporal trends in lightning, and other nuances to identify intense thunderstorms. In this paper, a machine-learning algorithm was employed to automatically learn and extract salient features and patterns in geostationary satellite data for the prediction of intense convection. Namely, a convolutional neural network (CNN) was trained on 0.64-μm reflectance and 10.35-μm brightness temperature from the Advanced Baseline Imager (ABI) and flash-extent density (FED) from the Geostationary Lightning Mapper (GLM) on board GOES-16. Using a training dataset consisting of over 220 000 human-labeled satellite images, the CNN learned pertinent features that are known to be associated with intense convection and skillfully discriminated between intense and ordinary convection. The CNN also learned a more nuanced feature associated with intense convection—strong infrared brightness temperature gradients near cloud edges in the vicinity of the main updraft. A successive-permutation test ranked the most important predictors as follows: 1) ABI 10.35-μm brightness temperature, 2) ABI GLM flash-extent density, and 3) ABI 0.64-μm reflectance. The CNN model can provide forecasters with quantitative information that often foreshadows the occurrence of severe weather, day or night, over the full range of instrument-scan modes.

Significance Statement

Trained human forecasters are particularly adept at picking out indicators of intense thunderstorms in weather satellite imagery. While previous algorithms have been developed to detect certain aspects of intense thunderstorms, this research is unique as it uses deep learning to incorporate the detection of all satellite-based features of intense thunderstorms, mimicking human pattern recognition. The model described in this research can provide forecasters rapid guidance on evolving severe weather threats day or night, even in the absence of precipitation-sensing weather radar.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John L. Cintineo, john.cintineo@ssec.wisc.edu

Abstract

Intense thunderstorms threaten life and property, impact aviation, and are a challenging forecast problem, particularly without precipitation-sensing radar data. Trained forecasters often look for features in geostationary satellite images such as rapid cloud growth, strong and persistent overshooting tops, U- or V-shaped patterns in storm-top temperature (and associated above-anvil cirrus plumes), thermal couplets, intricate texturing in cloud albedo (e.g., “bubbling” cloud tops), cloud-top divergence, spatial and temporal trends in lightning, and other nuances to identify intense thunderstorms. In this paper, a machine-learning algorithm was employed to automatically learn and extract salient features and patterns in geostationary satellite data for the prediction of intense convection. Namely, a convolutional neural network (CNN) was trained on 0.64-μm reflectance and 10.35-μm brightness temperature from the Advanced Baseline Imager (ABI) and flash-extent density (FED) from the Geostationary Lightning Mapper (GLM) on board GOES-16. Using a training dataset consisting of over 220 000 human-labeled satellite images, the CNN learned pertinent features that are known to be associated with intense convection and skillfully discriminated between intense and ordinary convection. The CNN also learned a more nuanced feature associated with intense convection—strong infrared brightness temperature gradients near cloud edges in the vicinity of the main updraft. A successive-permutation test ranked the most important predictors as follows: 1) ABI 10.35-μm brightness temperature, 2) ABI GLM flash-extent density, and 3) ABI 0.64-μm reflectance. The CNN model can provide forecasters with quantitative information that often foreshadows the occurrence of severe weather, day or night, over the full range of instrument-scan modes.

Significance Statement

Trained human forecasters are particularly adept at picking out indicators of intense thunderstorms in weather satellite imagery. While previous algorithms have been developed to detect certain aspects of intense thunderstorms, this research is unique as it uses deep learning to incorporate the detection of all satellite-based features of intense thunderstorms, mimicking human pattern recognition. The model described in this research can provide forecasters rapid guidance on evolving severe weather threats day or night, even in the absence of precipitation-sensing weather radar.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John L. Cintineo, john.cintineo@ssec.wisc.edu
Save
  • Adler, R. F., and D. D. Fenn, 1979: Thunderstorm intensity as determined from satellite data. J. Appl. Meteor., 18, 502517, https://doi.org/10.1175/1520-0450(1979)018<0502:TIADFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alber, M., and Coauthors, 2019: iNNvestigate neural networks! J. Mach. Learn. Res., 20, 18.

  • Apke, J. M., J. R. Mecikalski, and C. P. Jewett, 2016: Analysis of mesoscale atmospheric flows above mature deep convection using super rapid scan geostationary satellite data. J. Appl. Meteor. Climatol., 55, 18591887, https://doi.org/10.1175/JAMC-D-15-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachmeier, S., 2019: NWS Juneau, Alaska issues their first-ever severe thunderstorm warning—Based on satellite imagery. CIMSS Satellite Blog, accessed 1 December 2019. https://cimss.ssec.wisc.edu/satellite-blog/archives/34080.

  • Bedka, K., and K. Khlopenkov, 2016: A probabilistic multispectral pattern recognition method for detection of overshooting cloud tops using passive satellite imager observations. J. Appl. Meteor. Climatol., 55, 19832005, https://doi.org/10.1175/JAMC-D-15-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K., E. M. Murillo, C. R. Homeyer, B. Scarino, and H. Mersiovsky, 2018: The above-anvil cirrus plume: An important severe weather indicator in visible and infrared satellite imagery. Wea. Forecasting, 33, 11591181, https://doi.org/10.1175/WAF-D-18-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Binder, A., G. Montavon, S. Lapuschkin, K. R. Muller, and W. Samek, 2016: Layer-wise relevance propagation for neural networks with local renormalization layers. Int. Conf. on Artificial Neural Networks and Machine Learning—ICANN 2016, Barcelona, Spain, Springer, 63–71.

    • Crossref
    • Export Citation
  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Bruning, E., 2019: glmtools. GitHub, accessed 15 July 2018, https://github.com/deeplycloudy/glmtools.

  • Brunner, J. C., S. A. Ackerman, A. S. Bachmeier, and R. M. Rabin, 2007: A quantitative analysis of the enhanced-V feature in relation to severe weather. Wea. Forecasting, 22, 853872, https://doi.org/10.1175/WAF1022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnett, C., R. F. Garret, W. M. MacKenzie Jr., M. Seybold, J. Fulbright, and J. D. Sims, 2018: GLM observations through optically deep clouds: A case study. 22nd Conf. on Satellite Meteorology and Oceanography, Austin, TX, Amer. Meteor. Soc., 628, https://ams.confex.com/ams/98Annual/webprogram/Paper333686.html.

  • Chollet, F., 2015: Keras. GitHub, accessed 10 February 2019, https://github.com/keras-team/keras.

  • Cintineo, J. L., 2019: The probability of “intense convection” using geostationary satellite data. CIMSS Satellite Blog, S. Bachmeier, Ed., Cooperative Institute of Meteorological Satellite Studies, https://cimss.ssec.wisc.edu/satellite-blog/archives/34480.

  • Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and D. T. Lindsey, 2014: An empirical model for assessing the severe weather potential of developing convection. Wea. Forecasting, 29, 639653, https://doi.org/10.1175/WAF-D-13-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., and Coauthors, 2018: The NOAA/CIMSS ProbSevere model: Incorporation of total lightning and validation. Wea. Forecasting, 33, 331345, https://doi.org/10.1175/WAF-D-17-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., M. P. Pavolonis, J. M. Sieglaff, A. Wimmers, and J. C. Brunner, 2020: NOAA ProbSevere v2.0—ProbHail, ProbWind, and ProbTor. Wea. Forecasting, 35, 15231543, https://doi.org/10.1175/WAF-D-19-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. Tibshirani, 1986: Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci., 1, 5475, https://doi.org/10.1214/ss/1177013815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukushima, K., 1980: Neocognitron—A self-organizing neural network model for a mechanism of pattern-recognition unaffected by shift in position. Biol. Cybern., 36, 193202, https://doi.org/10.1007/BF00344251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., II, S. E. Haupt, D. W. Nychka, and G. Thompson, 2019: Interpretable deep learning for spatial analysis of severe hailstorms. Mon. Wea. Rev., 147, 28272845, https://doi.org/10.1175/MWR-D-18-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodfellow, I., Y. Bengio, and A. Courville, Eds., 2016: Back-propagation and other differentiation algorithms. Deep Learning, MIT Press, 200–220.

  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, https://doi.org/10.1016/j.atmosres.2013.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, K. M., X. Y. Zhang, S. Q. Ren, and J. Sun, 2016: Deep residual learning for image recognition. 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, IEEE, 770–778.

  • Hinton, G., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 2012: Improving neural networks by preventing co-adaptation of feature detectors. arXiv e-prints, https://arxiv.org/pdf/1207.0580.pdf.

  • Hoerl, A. E., and R. W. Kennard, 2000: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 42, 8086, https://doi.org/10.1080/00401706.2000.10485983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., J. D. McAuliffe, and K. M. Bedka, 2017: On the development of above-anvil cirrus plumes in extratropical convection. J. Atmos. Sci., 74, 16171633, https://doi.org/10.1175/JAS-D-16-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, W. R., and A. H. Murphy, 1986: The attributes diagram—A geometrical framework for assessing the quality of probability forecasts. Int. J. Forecasting, 2, 285293, https://doi.org/10.1016/0169-2070(86)90048-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ioffe, S., and C. Szegedy, 2015: Batch normalization: Accelerating deep network training by reducing internal covariate shift. Int. Conf. on Machine Learning, Lille, France, JMLR, 448–456.

  • Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012: ImageNet classification with deep convolutional neural networks. Commun. ACM, 60, 8490, https://doi.org/10.1145/3065386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagerquist, R., and D. J. Gagne II, 2019: Interpretation of deep learning for predicting thunderstorm rotation: Python tutorial. GitHub, accessed 4 March 2019, https://github.com/djgagne/ams-ml-python-course/blob/master/module_4/ML_Short_Course_Module_4_Interpretation.ipynb.

  • Lagerquist, R., A. McGovern, and D. J. Gagne, 2019: Deep learning for spatially explicit prediction of synoptic-scale fronts. Wea. Forecasting, 34, 11371160, https://doi.org/10.1175/WAF-D-18-0183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagerquist, R., A. McGovern, C. R. Homeyer, D. J. Gagne II, and T. Smith, 2020: Deep learning on three-dimensional multiscale data for next-hour tornado prediction. Mon. Wea. Rev., 148, 28372861, https://doi.org/10.1175/MWR-D-19-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., C. Karstens, J. Krause, K. Elmore, A. Ryzhkov, and S. Berkseth, 2015: Which polarimetric variables are important for weather/no-weather discrimination? J. Atmos. Oceanic Technol., 32, 12091223, https://doi.org/10.1175/JTECH-D-13-00205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., J. Johnson, and S. Yeung, 2020: CS231n convolutional neural networks for visual recognition. GitHub, accessed 10 October 2019, http://cs231n.github.io/convolutional-networks/.

  • Li, Y., H. K. Zhang, X. Z. Xue, Y. A. Jiang, and Q. Shen, 2018: Deep learning for remote sensing image classification: A survey. Wiley Interdiscip. Rev., 8, e1264, https://doi.org/10.1002/widm.1264.

    • Search Google Scholar
    • Export Citation
  • Litjens, G., and Coauthors, 2017: A survey on deep learning in medical image analysis. Med. Image Anal., 42, 6088, https://doi.org/10.1016/j.media.2017.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGovern, A., R. Lagerquist, D. J. Gagne, G. E. Jergensen, K. L. Elmore, C. R. Homeyer, and T. Smith, 2019: Making the black box more transparent: Understanding the physical implications of machine learning. Bull. Amer. Meteor. Soc., 100, 21752199, https://doi.org/10.1175/BAMS-D-18-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and J. F. W. Purdom, 1994: Introducing GOES-I—The 1st of a new-generation of geostationary operational environmental satellites. Bull. Amer. Meteor. Soc., 75, 757782, https://doi.org/10.1175/1520-0477(1994)075<0757:IGITFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metz, C., 1978: Basic principles of ROC analysis. Semin. Nucl. Med., 8, 283298, https://doi.org/10.1016/S0001-2998(78)80014-2.

  • Montavon, G., A. Binder, S. Lapuschkin, W. Samek, and K. Müller, 2019: Layer-wise relevance propagation: An overview. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, W. Samek et al., Eds., Springer, 193–210, https://doi.org/10.1007/978-3-030-28954-6_10.

    • Crossref
    • Export Citation
  • Nair, V., and G. Hinton, 2010: Rectified linear units improve restricted Boltzmann machines. Proc. 27th Int. Conf. on Machine Learning, Haifa, Israel, International Machine Learning Society, 807–814.

  • NOAA, 2019: Storm events database. NOAA, accessed 12 January 2020, https://www.ncdc.noaa.gov/stormevents/.

  • Purdom, J., 1976: Some uses of high-resolution GOES imagery in mesoscale forecasting of convection and its behavior. Mon. Wea. Rev., 104, 14741483, https://doi.org/10.1175/1520-0493(1976)104<1474:SUOHRG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ronneberger, O., P. Fischer, and T. Brox, 2015: U-Net: Convolutional networks for biomedical image segmentation. MICCAI 2015: Medical Image Computing and Computer-Assisted Intervention, N. Navab et al., Eds., Springer, 234–241, https://doi.org/10.1007/978-3-319-24574-4_28.

    • Crossref
    • Export Citation
  • Rudlosky, S. D., S. J. Goodman, K. S. Virts, and E. C. Bruning, 2019: Initial geostationary lightning mapper observations. Geophys. Res. Lett., 46, 10971104, https://doi.org/10.1029/2018GL081052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandmæl, T. N., C. R. Homeyer, K. M. Bedka, J. M. Apke, J. R. Mecikalski, and K. Khlopenkov, 2019: Evaluating the ability of remote sensing observations to identify significantly severe and potentially tornadic storms. J. Appl. Meteor. Climatol., 58, 25692590, https://doi.org/10.1175/JAMC-D-18-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidhuber, J., 2015: Deep learning in neural networks: An overview. Neural Networks, 61, 85117, https://doi.org/10.1016/j.neunet.2014.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation advanced baseline imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, https://doi.org/10.1175/BAMS-86-8-1079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., and Coauthors, 2015: Rapid refresh information of significant events: Preparing users for the next generation of geostationary operational satellites. Bull. Amer. Meteor. Soc., 96, 561576, https://doi.org/10.1175/BAMS-D-13-00210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2011: Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Wea. Forecasting, 26, 744755, https://doi.org/10.1175/WAF-D-10-05026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Setvák, M., and Coauthors, 2010: Satellite-observed cold-ring-shaped features atop deep convective clouds. Atmos. Res., 97, 8096, https://doi.org/10.1016/j.atmosres.2010.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Setvák, M., K. Bedka, D. T. Lindsey, A. Sokol, Z. Charvat, J. St’astka, and P. K. Wang, 2013: A-Train observations of deep convective storm tops. Atmos. Res., 123, 229248, https://doi.org/10.1016/j.atmosres.2012.06.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simonyan, K., A. Vedaldi, and A. Zisserman, 2014: Deep inside convolutional networks: Visualising image classification models and saliency maps. Workshop at Int. Conf. on Learning Representations, Banff, Canada, ICLR, 1–8, https://iclr.cc/archive/2014/workshop-proceedings/.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valachová, M., and M. Setvák, 2017: Satellite monitoring of the convective storms: Forecasters’ point of view. Czech Hydrometeorological Institute, 48 pp., https://www.ecmwf.int/sites/default/files/elibrary/2017/17282-satellite-monitoring-convective-storms-forecasters-point-view.pdf.

  • Wang, P. K., 2003: Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes. J. Geophys. Res., 108, 4194, https://doi.org/10.1029/2002JD002581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2007: The thermodynamic structure atop a penetrating convective thunderstorm. Atmos. Res., 83, 254262, https://doi.org/10.1016/j.atmosres.2005.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., K. Y. Cheng, M. Setvak, and C. K. Wang, 2016: The origin of the gullwing-shaped cirrus above an Argentinian thunderstorm as seen in CALIPSO images. J. Geophys. Res. Atmos., 121, 37293738, https://doi.org/10.1002/2015JD024111.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1056 0 0
Full Text Views 10479 7794 3269
PDF Downloads 2142 475 51