• Adlerman, E. J., and K. K. Droegemeier, 2002: The sensitivity of numerically simulated cyclic mesocyclogenesis to variations in model physical and computational parameters. Mon. Wea. Rev., 130, 26712691, https://doi.org/10.1175/1520-0493(2002)130<2671:TSONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agee, E., J. Snow, and P. Clare, 1976: Multiple vortex features in the tornado cyclone and the occurrence of tornado families. Mon. Wea. Rev., 104, 552563, https://doi.org/10.1175/1520-0493(1976)104<0552:MVFITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson-Frey, A. K., and H. Brooks, 2019: Tornado fatalities: An environmental perspective. Wea. Forecasting, 34, 19992015, https://doi.org/10.1175/WAF-D-19-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and et al. , 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and J. Correia, 2018: Long-term performance metrics for National Weather Service tornado warnings. Wea. Forecasting, 33, 15011511, https://doi.org/10.1175/WAF-D-18-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., L. R. Lemon, and D. W. Burgess, 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev., 106, 2938, https://doi.org/10.1175/1520-0493(1978)106<0029:TDBPDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., 2018: Observations of right-moving supercell motion forecast errors. Wea. Forecasting, 33, 145159, https://doi.org/10.1175/WAF-D-17-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., M. R. Hjelmfelt, and P. L. Smith, 2006a: An observational examination of long-lived supercells. Part I: Characteristics, evolution, and demise. Wea. Forecasting, 21, 673688, https://doi.org/10.1175/WAF949.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., J. S. Johnson, L. J. Czepyha, J. M. Grzywacz, B. A. Klimowski, and M. R. Hjelmfelt, 2006b: An observational examination of long-lived supercells. Part II: Environmental conditions and forecasting. Wea. Forecasting, 21, 689714, https://doi.org/10.1175/WAF952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., D. A. Barber, R. L. Thompson, R. Edwards, and J. Garner, 2014: Choosing a universal mean wind for supercell motion prediction. J. Oper. Meteor., 2, 115129, https://doi.org/10.15191/nwajom.2014.0211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavanaugh, D., M. Huffman, J. Dunn, and M. Fox, 2016: Connecting the dots: A communications model of the North Texas Integrated Warning Team during the 15 May 2013 tornado outbreak. Wea. Climate Soc., 8, 233245, https://doi.org/10.1175/WCAS-D-15-0047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, R. L. Thompson, B. T. Smith, and R. E. Jewell, 2019: Using near-ground storm relative helicity in supercell tornado forecasting. Wea. Forecasting, 34, 14171435, https://doi.org/10.1175/WAF-D-19-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74, 16691688, https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, J. M., 1998: On supercell motion in weaker wind environments. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 685–688.

  • Davies, J. M., 2006: Tornadoes in environments with small helicity and/or high LCL heights. Wea. Forecasting, 21, 579594, https://doi.org/10.1175/WAF928.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, J. M., and R. H. Johns, 1993: Some wind and instability parameters associated with strong and violent tornadoes: 1. Wind shear and helicity. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 573–582.

    • Crossref
    • Export Citation
  • Davies, J. M., C. A. Doswell, D. W. Burgess, and J. F. Weaver, 1994: Some noteworthy aspects of the Hesston, Kansas, tornado family of 13 March 1990. Bull. Amer. Meteor. Soc., 75, 10071018, https://doi.org/10.1175/1520-0477(1994)075<1007:SNAOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002a: The 8 June 1995 McLean, Texas, storm. Part I: Observations of cyclic tornadogenesis. Mon. Wea. Rev., 130, 26262648, https://doi.org/10.1175/1520-0493(2002)130<2626:TJMTSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002b: The 8 June 1995 McLean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130, 26492670, https://doi.org/10.1175/1520-0493(2002)130<2649:TJMTSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esterheld, J. M., and D. J. Giuliano, 2008: Discriminating between tornadic and non-tornadic supercells: A new hodograph technique. Electron. J. Severe Storms Meteor., 3 (2), https://ejssm.org/ojs/index.php/ejssm/article/viewArticle/33/37.

    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, I. PopStefanija, C. A. Baldi, and R. T. Bluth, 2014: Mobile, phased-array, Doppler radar observations of tornadoes at X band. Mon. Wea. Rev., 142, 10101036, https://doi.org/10.1175/MWR-D-13-00101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1960: A detailed analysis of the Fargo tornadoes of June 20, 1957. U.S. Department of Commerce, Weather Bureau, Research Paper 42, 98 pp.

  • Fujita, T. T., 1970: The Lubbock tornadoes: A study of suction spots. Weatherwise, 23, 161173, https://doi.org/10.1080/00431672.1970.9932888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1974: Jumbo tornado outbreak of 3 April 1974. Weatherwise, 27, 116126, https://doi.org/10.1080/00431672.1974.9931693.

  • Gilmore, M. S., and L. J. Wicker, 1998: The influence of midtropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126, 943958, https://doi.org/10.1175/1520-0493(1998)126<0943:TIOMDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoecker, W. H., 1963: Three southerly low-level jet systems delineated by the Weather Bureau special pibal network of 1961. Mon. Wea. Rev., 91, 573582, https://doi.org/10.1175/1520-0493(1963)091<0573:TSLJSD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., J. M. Davies, and P. W. Leftwich, 1993: Some wind and instability parameters associated with strong and violent tornadoes: 2. Variations in the combinations of wind and instability parameters. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 583–590.

    • Crossref
    • Export Citation
  • Kennedy, A., J. M. Straka, and E. N. Rasmussen, 2007: A statistical study of the association of DRCs with supercells and tornadoes. Wea. Forecasting, 22, 11911199, https://doi.org/10.1175/2007WAF2006095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A. T., and A. D. Kennedy, 2019: North American supercell environments in atmospheric reanalyses and RUC-2. J. Appl. Meteor. Climatol., 58, 7192, https://doi.org/10.1175/JAMC-D-18-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. D., C. A. Finley, and C. D. Karstens, 2012: The Bowdle, South Dakota, cyclic tornadic supercell of 22 May 2010: Surface analysis of rear-flank downdraft evolution and multiple internal surges. Mon. Wea. Rev., 140, 34193441, https://doi.org/10.1175/MWR-D-11-00351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and M. Umscheid, 2008: The Greensburg, Kansas, tornadic storm: A storm of extremes. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 2.4, https://ams.confex.com/ams/24SLS/techprogram/paper_141811.htm.

  • Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104, 133142, https://doi.org/10.1175/1520-0493(1976)104<0133:AEOTPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., and D. R. Whitney, 1947: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat., 18, 5060, https://doi.org/10.1214/aoms/1177730491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, J. R., 2001: T. Theodore Fujita: His contribution to tornado knowledge through damage documentation and the Fujita scale. Bull. Amer. Meteor. Soc., 82, 6372, https://doi.org/10.1175/1520-0477(2001)000<0063:TTFHCT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mead, C., and R. Thompson, 2011: Environmental characteristics associated with nocturnal significant-tornado events in the Great Plains. Electron. J. Severe Storms Meteor., 6 (6), https://ejssm.org/ojs/index.php/ejssm/article/viewArticle/84.

    • Search Google Scholar
    • Export Citation
  • Mitchell, E. D. W., S. V. Vasiloff, G. J. Stumpf, A. Witt, M. D. Eilts, J. Johnson, and K. W. Thomas, 1998: The National Severe Storms Laboratory tornado detection algorithm. Wea. Forecasting, 13, 352366, https://doi.org/10.1175/1520-0434(1998)013<0352:TNSSLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2017: On the forcing of the summertime Great Plains low-level jet. J. Atmos. Sci., 74, 39373953, https://doi.org/10.1175/JAS-D-17-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., and C. A. Doswell, 2005: A sensitivity study of hodograph-based methods for estimating supercell motion. Wea. Forecasting, 20, 954970, https://doi.org/10.1175/WAF889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, R. Davies-Jones, C. A. Doswell, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verification of the origins of rotation in tornadoes experiment: VORTEX. Bull. Amer. Meteor. Soc., 75, 9951006, https://doi.org/10.1175/1520-0477(1994)075<0995:VOTOOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, M. S. Gilmore, and R. Davies-Jones, 2006: A preliminary survey of rear-flank descending reflectivity cores in supercell storms. Wea. Forecasting, 21, 923938, https://doi.org/10.1175/WAF962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothfusz, L. P., R. Schneider, D. Novak, K. Klockow-McClain, A. E. Gerard, C. Karstens, G. J. Stumpf, and T. M. Smith, 2018: FACETs: A proposed next-generation paradigm for high-impact weather forecasting. Bull. Amer. Meteor. Soc., 99, 20252043, https://doi.org/10.1175/BAMS-D-16-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seimon, A., J. T. Allen, T. A. Seimon, S. J. Talbot, and D. K. Hoadley, 2016: Crowdsourcing the El Reno 2013 tornado: A new approach for collation and display of storm chaser imagery for scientific applications. Bull. Amer. Meteor. Soc., 97, 20692084, https://doi.org/10.1175/BAMS-D-15-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squitieri, B. J., and W. A. Gallus, 2020: On the forecast sensitivity of MCS cold pools and related features to horizontal grid spacing in convection-allowing WRF simulations. Wea. Forecasting, 35, 325346, https://doi.org/10.1175/WAF-D-19-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, J. B. Houser, S. J. Frasier, and K. M. Hardwick, 2012: Mobile, X-band, polarimetric Doppler radar observations of the 4 May 2007 Greensburg, Kansas, tornadic supercell. Mon. Wea. Rev., 140, 21032125, https://doi.org/10.1175/MWR-D-11-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and R. Edwards, 2000: An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea. Forecasting, 15, 682699, https://doi.org/10.1175/1520-0434(2000)015<0682:AOOECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WDTD, 2020: Warning decision training division radar & applications course: Storm-based warning fundamentals. Accessed 13 October 2020, https://training.weather.gov/wdtd/courses/rac/outline.php.

  • Wurman, J., K. Kosiba, P. Robinson, and T. Marshall, 2014: The role of multiple-vortex tornado structure in causing storm researcher fatalities. Bull. Amer. Meteor. Soc., 95, 3145, https://doi.org/10.1175/BAMS-D-13-00221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 548 548 38
Full Text Views 159 159 4
PDF Downloads 181 181 4

Anticipating Deviant Tornado Motion Using a Simple Hodograph Technique

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, Central Michigan University, Mt. Pleasant, Michigan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The paths of tornadoes have long been a subject of fascination since the meticulously drawn damage tracks by Dr. Tetsuya Theodore “Ted” Fujita. Though uncommon, some tornadoes have been noted to take sudden left turns from their previous path. This has the potential to present an extreme challenge to warning lead time, and the spread of timely, accurate information to broadcasters and emergency managers. While a few hypotheses exist as to why tornadoes deviate, none have been tested for their potential use in operational forecasting and nowcasting. As a result, such deviations go largely unanticipated by forecasters. A sample of 102 leftward deviant tornadic low-level mesocyclones was tracked via WSR-88D and assessed for their potential predictability. A simple hodograph technique is presented that shows promising skill in predicting the motion of deviant tornadoes, which, upon “occlusion,” detach from the parent storm’s updraft centroid and advect leftward or rearward by the low-level wind. This metric, a vector average of the parent storm motion and the mean wind in the lowest half-kilometer, proves effective at anticipating deviant tornado motion with a median error of less than 6 kt (1 kt ≈ 0.51 m s−1). With over 25% of analyzed low-level mesocyclones deviating completely out of the tornado warning polygon issued by their respective National Weather Service Weather Forecast Office, the adoption of this new technique could improve warning performance. Furthermore, with over 35% of tornadoes becoming “deviant” almost immediately upon formation, the ability to anticipate such events may inspire a new paradigm for tornado warnings that, when covering unpredictable behavior, are proactive instead of reactive.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cameron J. Nixon, cameron.nixon@cmich.edu

Abstract

The paths of tornadoes have long been a subject of fascination since the meticulously drawn damage tracks by Dr. Tetsuya Theodore “Ted” Fujita. Though uncommon, some tornadoes have been noted to take sudden left turns from their previous path. This has the potential to present an extreme challenge to warning lead time, and the spread of timely, accurate information to broadcasters and emergency managers. While a few hypotheses exist as to why tornadoes deviate, none have been tested for their potential use in operational forecasting and nowcasting. As a result, such deviations go largely unanticipated by forecasters. A sample of 102 leftward deviant tornadic low-level mesocyclones was tracked via WSR-88D and assessed for their potential predictability. A simple hodograph technique is presented that shows promising skill in predicting the motion of deviant tornadoes, which, upon “occlusion,” detach from the parent storm’s updraft centroid and advect leftward or rearward by the low-level wind. This metric, a vector average of the parent storm motion and the mean wind in the lowest half-kilometer, proves effective at anticipating deviant tornado motion with a median error of less than 6 kt (1 kt ≈ 0.51 m s−1). With over 25% of analyzed low-level mesocyclones deviating completely out of the tornado warning polygon issued by their respective National Weather Service Weather Forecast Office, the adoption of this new technique could improve warning performance. Furthermore, with over 35% of tornadoes becoming “deviant” almost immediately upon formation, the ability to anticipate such events may inspire a new paradigm for tornado warnings that, when covering unpredictable behavior, are proactive instead of reactive.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cameron J. Nixon, cameron.nixon@cmich.edu
Save