• Aksoy, A., D. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824, https://doi.org/10.1175/2008MWR2691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albers, S. C., 1995: The LAPS wind analysis. Wea. Forecasting, 10, 342352, https://doi.org/10.1175/1520-0434(1995)010<0342:TLWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and N. Collins, 2007: Scalable implementations of ensemble filter algorithms for data assimilation. J. Atmos. Oceanic Technol., 24, 14521463, https://doi.org/10.1175/JTECH2049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, https://doi.org/10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, W., 2014: Convective-scale radar data assimilation and adaptive radar observation with the ensemble Kalman filter. Ph.D. thesis, McGill University, 154 pp., https://escholarship.mcgill.ca/concern/theses/8s45qc87q?locale=en.

  • Clark, A. J., R. G. Bullock, T. L. Jensen, M. Xue, and F. Kong, 2014: Application of object-based time-domain diagnostics for tracking precipitation systems in convection-allowing models. Wea. Forecasting, 29, 517542, https://doi.org/10.1175/WAF-D-13-00098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., B. G. Brown, and R. G. Bullock, 2006a: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, https://doi.org/10.1175/MWR3145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., B. G. Brown, and R. G. Bullock, 2006b: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Wea. Rev., 134, 17851795, https://doi.org/10.1175/MWR3146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, https://doi.org/10.1175/2009MWR2956.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., E. R. Mansell, Y. Jung, L. J. Wicker, M. R. Kumjian, and M. Xue, 2014: Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J. Atmos. Sci., 71, 276299, https://doi.org/10.1175/JAS-D-13-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble forecasting and data assimilation. J. Atmos. Oceanic Technol., 26, 911927, https://doi.org/10.1175/2008JTECHA1156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005, https://doi.org/10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and Coauthors, 2016: Development of a High- Resolution Rapid Refresh Ensemble (HRRRE) for severe weather forecasting. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 8B.2, https://ams.confex.com/ams/28SLS/webprogram/Paper301555.html.

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flora, M. L., and Coauthors, 2019: Object-based verification of short-term, storm-scale probabilistic mesocyclone guidance from an experimental Warn-on-Forecast system. Wea. Forecasting, 34, 17211739, https://doi.org/10.1175/WAF-D-19-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., and Coauthors, 2017: Breaking new ground in severe weather prediction: The 2015 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Wea. Forecasting, 32, 15411568, https://doi.org/10.1175/WAF-D-16-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., Jr., 2010: Application of object-based verification techniques to ensemble precipitation forecasts. Wea. Forecasting, 25, 144158, https://doi.org/10.1175/2009WAF2222274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, T., and Coauthors, 2018: On the representation error in data assimilation. Quart. J. Roy. Meteor. Soc., 144, 12571278, https://doi.org/10.1002/qj.3130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp., http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.

  • Jing, Z., and G. Weiner, 1993: Two-dimensional dealiasing of Doppler velocities. J. Atmos. Oceanic Technol., 10, 798808, https://doi.org/10.1175/1520-0426(1993)010<0798:TDDODV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, F. Kong, and M. Xue, 2013: Object-based evaluation of the impact of horizontal grid spacing on convection-allowing forecasts. Mon. Wea. Rev., 141, 34133425, https://doi.org/10.1175/MWR-D-13-00027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and D. J. Stensrud, 2015: Assimilating cloud water path as a function of model cloud microphysics in an idealized simulation. Mon. Wea. Rev., 143, 20522081, https://doi.org/10.1175/MWR-D-14-00266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikondo, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast System. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297327, https://doi.org/10.1175/WAF-D-15-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., X. Wang, P. S. Skinner, A. Johnson, and Y. Wang, 2018: Assimilation of GOES-13 imager clear-sky water vapor (6.5 μm) radiances into a Warn-on-Forecast system. Mon. Wea. Rev., 146, 10771107, https://doi.org/10.1175/MWR-D-17-0280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, C. A., and X. Wang, 2020: Ensemble-based targeted observation method applied to radar radial velocity observations on idealized supercell low-level rotation forecasts: A proof of concept. Mon. Wea. Rev., 148, 877890, https://doi.org/10.1175/MWR-D-19-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., C. Karstens, J. Krause, and L. Tang, 2014: Quality control of weather radar data using polarimetric variables. J. Atmos. Oceanic Technol., 31, 12341249, https://doi.org/10.1175/JTECH-D-13-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lange, H., and G. C. Craig, 2014: The impact of data assimilation length scales on analysis and prediction of convective storms. Mon. Wea. Rev., 142, 37813808, https://doi.org/10.1175/MWR-D-13-00304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, H., and Q. Xu, 2009: Trade-offs between measurement accuracy and resolutions in configuring phased-array radar velocity scans for ensemble-based storm-scale data assimilation. J. Appl. Meteor. Climatol., 48, 12301244, https://doi.org/10.1175/2008JAMC2009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahalik, M. C., B. R. Smith, K. L. Elmore, D. M. Kingfield, K. L. Ortega, and T. M. Smith, 2019: Estimates of gradients in radar moments using a linear least squares derivative technique. Wea. Forecasting, 34, 415434, https://doi.org/10.1175/WAF-D-18-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majcen, M., P. Markowski, Y. Richardson, D. Dowell, and J. Wurman, 2008: Multipass objective analyses of Doppler radar data. J. Atmos. Oceanic Technol., 25, 18451858, https://doi.org/10.1175/2008JTECHA1089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. L., V. Lakshmanan, and T. M. Smith, 2013: An automated method for depicting mesocyclone paths and intensities. Wea. Forecasting, 28, 570585, https://doi.org/10.1175/WAF-D-12-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, https://doi.org/10.1109/TGRS.2011.2144601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittermaier, M., and N. Roberts, 2010: Intercomparison of spatial forecast methods: Identifying skillful spatial scales using the fractions skill score. Wea. Forecasting, 25, 343354, https://doi.org/10.1175/2009WAF2222260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salonen, K., H. Järvinen, G. Haase, S. Niemelä, and R. Eresmaa, 2009: Doppler radar radial winds in HIRLAM. Part II: Optimizing the super-observation processing. Tellus, 61A, 288295, https://doi.org/10.1111/j.1600-0870.2008.00381.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seko, H., T. Kawabata, T. Tsuyuki, H. Nakamura, K. Koizumi, and T. Iwabuchi, 2004: Impacts of GPS-derived water vapor and radial wind measured by Doppler radar on numerical prediction of precipitation. J. Meteor. Soc. Japan, 82, 473489, https://doi.org/10.2151/jmsj.2004.473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skinner, P. S., L. Wicker, D. M. Wheatley, and K. H. Knopfmeier, 2016: Application of two spatial verification methods to ensemble forecasts of low-level rotation. Wea. Forecasting, 31, 713735, https://doi.org/10.1175/WAF-D-15-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., and Coauthors, 2018: Object-based verification of a prototype warn-on-forecast system. Wea. Forecasting, 33, 12251250, https://doi.org/10.1175/WAF-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, https://doi.org/10.1175//2555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., and L. J. Wicker, 2015: On the impact of additive noise in storm-scale EnKF experiments. Mon. Wea. Rev., 143, 30673086, https://doi.org/10.1175/MWR-D-14-00323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2013: Progress and challenges with warn-on-forecast. Atmos. Res., 123, 216, https://doi.org/10.1016/j.atmosres.2012.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, T. E., L. J. Wicker, and X. Wang, 2015: A comparison between the local ensemble transform Kalman filter and the ensemble square root filter for the assimilation of radar data in convective-scale models. Quart. J. Roy. Meteor. Soc., 141, 11631176, https://doi.org/10.1002/qj.2423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807, https://doi.org/10.1175/MWR2898.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast System. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., D. M. Wheatley, K. H. Knopfmeier, P. L. Heinselman, P. Skinner, J. J. Choate, T. A. Jones, and J. Poterjoy, 2018: Sensitivity experiments assessing ensemble forecast reliability for the 16 May 2017 western Oklahoma severe weather outbreak: Current status of NSSL’s “Warn-on-Forecast” storm-scale prediction system. Eighth Conf. on Transition of Research to Operations, Austin, TX, Amer. Meteor. Soc., 14A.1, https://ams.confex.com/ams/98Annual/webprogram/Paper326888.html.

  • Yussouf, N., and D. J. Stensrud, 2010: Impact of phased-array radar observations over a short assimilation period: Observing system simulation experiments using an ensemble Kalman filter. Mon. Wea. Rev., 138, 517538, https://doi.org/10.1175/2009MWR2925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 236 0 0
Full Text Views 384 199 24
PDF Downloads 330 123 9

Updraft-Based Adaptive Assimilation of Radial Velocity Observations in a Warn-on-Forecast System

Christopher A. Kerr Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Christopher A. Kerr in
Current site
Google Scholar
PubMed
Close
,
Louis J. Wicker NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Louis J. Wicker in
Current site
Google Scholar
PubMed
Close
, and
Patrick S. Skinner Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Patrick S. Skinner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Warn-on-Forecast system (WoFS) provides short-term, probabilistic forecasts of severe convective hazards including tornadoes, hail, and damaging winds. WoFS initial conditions are created through frequent assimilation of radar (reflectivity and radial velocity), satellite, and in situ observations. From 2016 to 2018, 5-km radial velocity Cressman superob analyses were created to reduce the observation counts and subsequent assimilation computational costs. The superobbing procedure smooths the radial velocity and subsequently fails to accurately depict important storm-scale features such as mesocyclones. This study retrospectively assimilates denser, 3-km radial velocity analyses in lieu of the 5-km analyses for eight case studies during the spring of 2018. Although there are forecast improvements during and shortly after convection initiation, 3-km analyses negatively impact forecasts initialized when convection is ongoing, as evidenced by model failure and initiation of spurious convection. Therefore, two additional experiments are performed using adaptive assimilation of 3-km radial velocity observations. Initially, an updraft variance mask is applied that limits radial velocity assimilation to areas where the observations are more likely to be beneficial. This experiment reduces spurious convection as well as the number of observations assimilated, in some cases even below that of the 5-km analysis experiments. The masking, however, eliminates an advantage of 3-km radial velocity assimilation for convection initiation timing. This problem is mitigated by additionally assimilating 3-km radial velocity observations in locations where large differences exist between the observed and ensemble-mean reflectivity fields, which retains the benefits of the denser radial velocity analyses while reducing the number of observations assimilated.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher A. Kerr, christopher.kerr@noaa.gov

Abstract

The Warn-on-Forecast system (WoFS) provides short-term, probabilistic forecasts of severe convective hazards including tornadoes, hail, and damaging winds. WoFS initial conditions are created through frequent assimilation of radar (reflectivity and radial velocity), satellite, and in situ observations. From 2016 to 2018, 5-km radial velocity Cressman superob analyses were created to reduce the observation counts and subsequent assimilation computational costs. The superobbing procedure smooths the radial velocity and subsequently fails to accurately depict important storm-scale features such as mesocyclones. This study retrospectively assimilates denser, 3-km radial velocity analyses in lieu of the 5-km analyses for eight case studies during the spring of 2018. Although there are forecast improvements during and shortly after convection initiation, 3-km analyses negatively impact forecasts initialized when convection is ongoing, as evidenced by model failure and initiation of spurious convection. Therefore, two additional experiments are performed using adaptive assimilation of 3-km radial velocity observations. Initially, an updraft variance mask is applied that limits radial velocity assimilation to areas where the observations are more likely to be beneficial. This experiment reduces spurious convection as well as the number of observations assimilated, in some cases even below that of the 5-km analysis experiments. The masking, however, eliminates an advantage of 3-km radial velocity assimilation for convection initiation timing. This problem is mitigated by additionally assimilating 3-km radial velocity observations in locations where large differences exist between the observed and ensemble-mean reflectivity fields, which retains the benefits of the denser radial velocity analyses while reducing the number of observations assimilated.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher A. Kerr, christopher.kerr@noaa.gov
Save