• Baldwin, M., R. Treadon, and S. Contorno, 1994: Precipitation type prediction using a decision tree approach with NMC’s Mesoscale Eta Model. Preprints, 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 30–31.

  • Baldwin, M., and S. P. Contorno, 1993: Development of a weather-type prediction system for NMC’s mesoscale Eta model. Preprints, 13th Conf. on Weather Analysis and Forecasting, Vienna, VA, Amer. Meteor. Soc., 86–87.

  • Benjamin, S. G., G. A. Grell, J. M. Brown, and T. G. Smirnova, 2004: Mesoscale weather prediction with the RUC hybrid isentropic terrain-following coordinate model. Mon. Wea. Rev., 132, 473494, https://doi.org/10.1175/1520-0493(2004)132<0473:MWPWTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016a: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., J. M. Brown, and T. G. Smirnova, 2016b: Explicit precipitation-type diagnosis from a model using a mixed-phase bulk cloud-precipitation microphysics parameterizations. Wea. Forecasting, 31, 609619, https://doi.org/10.1175/WAF-D-15-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bocchieri, J. R., 1980: The objective use of upper air soundings to specify precipitation type. Mon. Wea. Rev., 108, 596603, https://doi.org/10.1175/1520-0493(1980)108<0596:TOUOUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourgouin, P., 2000: A method to determine precipitation types. Wea. Forecasting, 15, 583592, https://doi.org/10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M. X., and Coauthors, 2018: Enhanced weather research and forecasting in support of the Beijing 2022 Winter Olympic and Paralympic Games. WMO Bull., 67 (2), 5861,https://public.wmo.int/en/resources/bulletin/enhanced-weather-research-and-forecasting-support-of-beijing-2022-winter-olympic.

    • Search Google Scholar
    • Export Citation
  • Chenard, M., P. N. Schumacher, and H. D. Reeves, 2015: Determining precipitation type from maximum temperature in the lower atmosphere. 27th Conf. on Weather Analysis and Forecasting/23rd Conf. on Numerical Weather Prediction, Chicago, IL, Amer. Meteor. Soc., 6B.2, https://ams.confex.com/ams/27WAF23NWP/webprogram/Paper273342.html.

  • Cheng, C. L., M. Chen, M. X. Chen, F. Gao, L. Y. Song, R. Qin, L. Yang, and Y. Wang, 2019: Comparative experiments on two high spatiotemporal resolution blending algorithms for quantitative precipitation nowcasting (in Chinese). Acta Meteor. Sin., 77, 701714.

    • Search Google Scholar
    • Export Citation
  • Cortinas, J. V., Jr., B. C. Bernstein, C. C. Robbins, and J. W. Strapp, 2004: An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–90. Wea. Forecasting, 19, 377390, https://doi.org/10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, J. X., 2011: Ground Meteorological Observation. China Meteorological Press, 322 pp.

  • Czys, R. R., R. W. Scott, K. C. Tang, R. W. Przybylinski, and M. E. Sabones, 1996: A physically based, nondimensional parameter for discriminating between locations of freezing rain and ice pellets. Wea. Forecasting, 11, 591598, https://doi.org/10.1175/1520-0434(1996)011<0591:APBNPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, B. H., K. Yang, J. Qin, L. Wang, Y. Y. Chen, and X. B. He, 2014: The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization. J. Hydrol., 513, 154163, https://doi.org/10.1016/J.JHYDROL.2014.03.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., H. M. Grams, D. Apps, and H. D. Reeves, 2015: Verifying forecast precipitation type with mPING. Wea. Forecasting, 30, 656667, https://doi.org/10.1175/WAF-D-14-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, S., and R. E. Stewart, 2007: Observations of ice pellets during a winter storm. Atmos. Res., 85, 6476, https://doi.org/10.1016/j.atmosres.2006.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haiden, T, A. Kann, C. Wittmann, G. Pistotnik, B. Bica, and C. Gruber, 2011: The Integrated Nowcasting through Comprehensive Analysis (INCA) system and its validation over the eastern Alpine region. Wea. Forecasting, 26, 166183, https://doi.org/10.1175/2010WAF2222451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harpold, A. A., M. L. Kaplan, P. Z. Klos, T. Link, J. P. McNamara, S. Rajagopal, and R. Schumer, 2017: Rain or snow: Hydrologic processes, observations, prediction, and research needs. Hydrol. Earth Syst. Sci., 21, 122, https://doi.org/10.5194/hess-21-1-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeda, K., M. Steiner, J. Pinto, and C. A. Alexander, 2013: Evaluation of cold-season precipitation forecasts generated by the hourly updating High-Resolution Rapid Refresh model. Wea. Forecasting, 28, 921939, https://doi.org/10.1175/WAF-D-12-00085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joe, P., and Coauthors, 2010: Weather services, science advances, and the Vancouver 2010 Olympic and Paralympic Winter Games. Bull. Amer. Meteor. Soc., 91, 3136, https://doi.org/10.1175/2009BAMS2998.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. M. Goss, and M. E. Baldwin, 2000: The melting effect as a factor in precipitation-type forecasting. Wea. Forecasting, 15, 700714, https://doi.org/10.1175/1520-0434(2000)015<0700:TMEAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kienzle, S. W., 2008: A new temperature based method to separate rain and snow. Hydrol. Processes, 22, 50675085, https://doi.org/10.1002/hyp.7131.

  • Kiktev, D., and Coauthors, 2017: FZOST-2014: The Sochi Winter Olympics International Project. Bull. Amer. Meteor. Soc., 98, 19081929, https://doi.org/10.1175/BAMS-D-15-00307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., K. Keeter, L. G. Lee, and M. B. Ek, 2002: Model representation of freezing and melting precipitation: Implications for winter weather forecasting. Wea. Forecasting, 17, 10161033, https://doi.org/10.1175/1520-0434(2003)017<1016:MROFAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. B., G. E. Li, Y. J. Pei, F. X. Wang, X. L. Wang, and J. Wen, 2009: Analysis on the phase transformation of precipitation during a strong cold wave happened in spring (in Chinese). Meteor. Mon., 35, 8794.

    • Search Google Scholar
    • Export Citation
  • Liu, S. H., D. H. Yan, T. L. Qin, B. S. Weng, Y. J. Lu, G. Q. Dong, and B. Gong, 2016: Precipitation phase separation schemes in the Naqu River basin, eastern Tibetan Plateau. Theor. Appl. Climatol., 131, 399411, https://doi.org/10.1007/s00704-016-1967-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., P. J. Neiman, B. Martner, A. B. White, D. J. Gottas, and F. M. Ralph, 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of melting level. J. Hydrometeor., 9, 194211, https://doi.org/10.1175/2007JHM853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manikin, G. S., 2005: An overview of precipitation type forecasting using NAM and SREF data. 21st Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, Washington, DC, Amer. Meteor. Soc., 8A.6, https://ams.confex.com/ams/pdfpapers/94838.pdf.

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G. Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qi, L. B., 2012: Formation mechanism and forecast on FZ and ice pellet in winter of China (in Chinese). Meteor. Mon., 38, 769778.

  • Rajagopal, S., and A. A. Harpold, 2016: Testing and improving temperature thresholds for snow and rain prediction in the western United States. J. Amer. Water Resour. Assoc., 52, 11421154, https://doi.org/10.1111/1752-1688.12443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramer, J., 1993: An empirical technique for diagnosing precipitation type from model output. Fifth Int. Conf. on Aviation Weather Systems, Vienna, VA, Amer. Meteor. Soc., 227–230.

  • Reeves, H. D., K. L. Elmore, A. Ryzhkov, T. Schuur, and J. Krause, 2014: Source of uncertainty in precipitation-type forecasting. Wea. Forecasting, 29, 936953, https://doi.org/10.1175/WAF-D-14-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., A. V. Ryzhkov, and J. Krause, 2016: Discrimination between winter precipitation types based on spectral-bin microphysical modeling. J. Appl. Meteor. Climatol., 55, 17471761, https://doi.org/10.1175/JAMC-D-16-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., H.-S. Park, A. V. Ryzhkof, and H. D. Reeves, 2012: Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals. J. Appl. Meteor. Climatol., 51, 763779, https://doi.org/10.1175/JAMC-D-11-091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, T. L., S. G. Benjamin, J. M. Brown, S. Weygandt, T. Smirnova, and B. Schwartz, 2008: Convection forecasts from the hourly updated, 3-km High Resolution Rapid Refresh (HRRR) Model. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 11.1, https://ams.confex.com/ams/pdfpapers/142055.pdf.

  • Song, L. Y., M. X. Chen, C. L. Cheng, F. Gao, and M. Chen, 2019a: Characteristics of summer radar QPE error and a climatological correction method over Beijing-Tianjin-Hebei region (in Chinese). Acta Meteor. Sin., 77, 497515.

    • Search Google Scholar
    • Export Citation
  • Song, L. Y., M. X. Chen, F. Gao, C. L. Cheng, M. Chen, L. Yang, and Y. Wang, 2019b: Elevation influence on rainfall and a parameterization algorithm in the Beijing area. J. Meteor. Res., 33, 11431156, https://doi.org/10.1007/s13351-019-9072-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., J. M. Thériault, and W. Henson, 2015: On the characteristics of and processes producing winter precipitation types near 0°C. Bull. Amer. Meteor. Soc., 96, 623639, https://doi.org/10.1175/BAMS-D-14-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J. S., F. Liang, M. Chen, and X. N. Liao, 2003: An analysis on serious city traffic trouble caused by light snow (in Chinese). Chin. J. Atmos. Sci., 27, 10571066.

    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., R. E. Stewart, J. A. Milbrandt, and M. K. Yau, 2006: On the simulation of winter precipitation types. J. Geophys. Res., 111, D18202, https://doi.org/10.1029/2005JD006665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., R. E. Stewart, and W. Henson, 2010: On the dependence of winter precipitation types on temperature, precipitation rate, and associated features. J. Appl. Meteor. Climatol., 49, 14291442, https://doi.org/10.1175/2010JAMC2321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., and Coauthors, 2012: A case study of processes impacting precipitation phase and intensity during the Vancouver 2010 Winter Olympics. Wea. Forecasting, 27, 13011325, https://doi.org/10.1175/WAF-D-11-00114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D. H., and Coauthors, 2008: A preliminary analysis of features and causes of the snow storm event over the Southern China in January 2008 (in Chinese). Acta Meteor. Sin., 66, 405422, https://doi.org/10.1007/s10114-007-0998-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H., and R. H. Jin, 2010: Analyses of influence of terrain on freezing-rain weather in Hunan in the early 2008 Plateau (in Chinese). Meteor. (Mainz), 29, 957967.

    • Search Google Scholar
    • Export Citation
  • Yan, X. D., Z. P. Wu, and S. H. Gu, 2009: Analyses on the space-time distribution characteristics and their influence factors of FZ in Guizhou Province (in Chinese). Plateau Meteor., 28, 694701.

    • Search Google Scholar
    • Export Citation
  • Yang, L., M. Chen, M. X. Chen, F. Gao, R. Qin, L. Y. Song, and C. L. Cheng, 2019: Fusion of 3D high temporal and spatial resolution wind field and its application in nowcasting of severe convective weather (in Chinese). Acta Meteor. Sin., 77, 243255.

    • Search Google Scholar
    • Export Citation
  • Yang, Z. L., R. E. Dickinson, A. Robock, and K. Y. Vinnikov, 1997: Validation of the snow submodel of the Biosphere–Atmosphere Transfer Scheme with Russian snow cover and meteorological observational data. J. Climate, 10, 353373, https://doi.org/10.1175/1520-0442(1997)010<0353:VOTSSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, F. C., L. X. Guo, Y. S. Shi, and J. Zeng, 2013: Discrimination index of precipitation phase state and its verification in Beijing (in Chinese). Qixiang Yu Huanjing Xuebao, 29, 4954.

    • Search Google Scholar
    • Export Citation
  • Zerr, R. J., 1997: Freezing rain: An observational and theoretical study. J. Appl. Meteor., 36, 16471661, https://doi.org/10.1175/1520-0450(1997)036<1647:FRAOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, L., C. W. Guo, X. C. Ma, W. Zhao, L. lei, and J. L. Guo, 2018: Forecast deviation and analysis of the first snow in Beijing on 20 November 2016. Meteor. Mon., 44, 151158.

    • Search Google Scholar
    • Export Citation
  • Zhang, L. N., and R. Guo, 2014: Analyses on relationship and causes for the three high-influence weather events in Beijing in winter 2012. Meteor. Mon., 40, 598604.

    • Search Google Scholar
    • Export Citation
  • Zhang, T. J., 2005: Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys., 43, RG4002, https://doi.org/10.1029/2004RG000157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, K., F. Zheng, H. Wu, C. Qin, and X. Xu, 2017: Dynamic changes in temperature extremes and their association with atmospheric circulation patterns in the Songhua River Basin, China. Atmos. Res., 190, 7788, https://doi.org/10.1016/j.atmosres.2017.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, K., F. Zheng, X. Xu, and C. Qin, 2018: Discriminating the precipitation phase based on different temperature thresholds in the Songhua River Basin, China. Atmos. Res., 205, 4859, https://doi.org/10.1016/j.atmosres.2018.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 266 266 16
Full Text Views 84 84 4
PDF Downloads 106 106 5

Classification of Precipitation Type in North China Using Model-Based Explicit Fields of Hydrometeors with Modified Thermodynamic Conditions

View More View Less
  • 1 Institute of Urban Meteorology, China Meteorological Administration, Beijing, China
  • | 2 Shanxi Meteorological Observatory, Taiyuan, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The ability to forecast thermodynamic conditions aloft and near the surface is critical to the accurate forecasting of precipitation type at the surface. This paper presents an experimental version of a new scheme for diagnosing precipitation type. The method considers the optimum surface temperature threshold associated with each precipitation type and combines model-based explicit fields of hydrometeors with higher-resolution modified thermodynamic and topographic information to determine precipitation types in North China. Based on over 60 years of precipitation-type samples from North China, this study explores the climatological characteristics of the five precipitation types—snow, rain, ice pellets (IP), rain/snow mix (R/S MIX), and freezing rain (FZ)—as well as the suitable air temperature T a and wet-bulb temperature T w thresholds for distinguishing different precipitation types. Direct output from numerical weather prediction (NWP) models, such as temperature and humidity, was modified by downscaling and bias correction, as well as by incorporating the latest surface observational data and high-resolution topographic data. Validation of the precipitation-type forecasts from this scheme was performed against observations from the 2016 to 2019 winter seasons and two case studies were also analyzed. Compared with the similar diagnostic routine in the High-Resolution Rapid Refresh (HRRR) forecasting system used to predict precipitation type over North China, the skill of the method proposed here is similar for rain and better for snow, R/S MIX, and FZ. Furthermore, depiction of the diagnosed boundary between R/S MIX and snow is good in most areas. However, the number of misclassifications for R/S MIX is significantly larger than for rain and snow.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mingxuan Chen, mxchen@ium.cn; mxchen@bjmb.gov.cn

Abstract

The ability to forecast thermodynamic conditions aloft and near the surface is critical to the accurate forecasting of precipitation type at the surface. This paper presents an experimental version of a new scheme for diagnosing precipitation type. The method considers the optimum surface temperature threshold associated with each precipitation type and combines model-based explicit fields of hydrometeors with higher-resolution modified thermodynamic and topographic information to determine precipitation types in North China. Based on over 60 years of precipitation-type samples from North China, this study explores the climatological characteristics of the five precipitation types—snow, rain, ice pellets (IP), rain/snow mix (R/S MIX), and freezing rain (FZ)—as well as the suitable air temperature T a and wet-bulb temperature T w thresholds for distinguishing different precipitation types. Direct output from numerical weather prediction (NWP) models, such as temperature and humidity, was modified by downscaling and bias correction, as well as by incorporating the latest surface observational data and high-resolution topographic data. Validation of the precipitation-type forecasts from this scheme was performed against observations from the 2016 to 2019 winter seasons and two case studies were also analyzed. Compared with the similar diagnostic routine in the High-Resolution Rapid Refresh (HRRR) forecasting system used to predict precipitation type over North China, the skill of the method proposed here is similar for rain and better for snow, R/S MIX, and FZ. Furthermore, depiction of the diagnosed boundary between R/S MIX and snow is good in most areas. However, the number of misclassifications for R/S MIX is significantly larger than for rain and snow.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mingxuan Chen, mxchen@ium.cn; mxchen@bjmb.gov.cn
Save