• Bosart, L. F., and H. B. Bluestein, 2008: Synoptic-Dynamic Meteorology and Weather Analysis And Forecasting: A Tribute To Fred Sanders. Meteor. Monogr., No. 33, Amer. Meteor. Soc., 440 pp.

    • Crossref
    • Export Citation
  • Fan, Y., and H. van den Dool, 2008: A global monthly land surface air temperature analysis for 1948-present. J. Geophys. Res., 113, D01103, https://doi.org/10.1029/2007JD008470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., K. Fan, and B. Tian, 2016: Has the prediction of the South China Sea summer monsoon improved since the late 1970s? J. Meteor. Res., 30, 833852, https://doi.org/10.1007/s13351-016-6052-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, F., and et al. , 2019: Risks of precipitation extremes over Southeast Asia: Does 1.5°C or 2°C global warming make a difference? Environ. Res. Lett., 14, 044015, https://doi.org/10.1088/1748-9326/aaff7e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghosh, T., and T. N. Krishnamurti, 2018: Improvements in hurricane intensity forecasts from a multimodel superensemble utilizing a generalized neural network technique. Wea. Forecasting, 33, 873885, https://doi.org/10.1175/WAF-D-17-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., X. Zhi, Q. You, B. Song, and K. Fraedrich, 2015: Multi-model ensemble forecasts of tropical cyclones in 2010 and 2011 based on the Kalman Filter method. Meteor. Atmos. Phys., 127, 467479, https://doi.org/10.1007/s00703-015-0377-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, L., X. Zhi, S. Zhu, and K. Fraedrich, 2019: Probabilistic precipitation forecasting over East Asia using Bayesian model averaging. Wea. Forecasting, 34, 377392, https://doi.org/10.1175/WAF-D-18-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, L., X. Zhi, C. Simmer, S. Zhu, and Y. Ji, 2020: Multimodel ensemble forecasts of precipitation based on an object-based diagnostic evaluation. Mon. Wea. Rev., 148, 25912606, https://doi.org/10.1175/MWR-D-19-0266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jun, S., N.-Y. Kang, W. Lee, and Y. Chun, 2017: An alternative multi-model ensemble forecast for tropical cyclone tracks in the western North Pacific. Atmosphere, 8, 174, https://doi.org/10.3390/atmos8090174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H., M. A. Janiga, and K. Pegion, 2019a: MJO propagation processes and mean biases in the SubX and S2S reforecasts. J. Geophys. Res. Atmos., 124, 93149331, https://doi.org/10.1029/2019JD031139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H., J. H. Richter, and Z. Martin, 2019b: Insignificant QBO-MJO prediction skill relationship in the SubX and S2S subseasonal reforecasts. J. Geophys. Res. Atmos., 124, 12 65512 666, https://doi.org/10.1029/2019JD031416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and et al. , 2014: The North American multimodel ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, https://doi.org/10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran, 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285, 15481550, https://doi.org/10.1126/science.285.5433.1548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, Z. Zhang, T. LaRow, D. Bachiochi, E. Williford, S. Gadgil, and S. Surendran, 2000: Multimodel ensemble forecasts for weather and seasonal climate. J. Climate, 13, 41964216, https://doi.org/10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and et al. , 2003: Improved skill for the anomaly correlation of geopotential heights at 500 hPa. Mon. Wea. Rev., 131, 10821102, https://doi.org/10.1175/1520-0493(2003)131<1082:ISFTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., V. Kumar, A. Simon, A. Bhardwaj, T. Ghosh, and R. Ross, 2016: A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes. Rev. Geophys., 54, 336377, https://doi.org/10.1002/2015RG000513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., 2019: Predictability of weather and climate. Earth Space Sci., 6, 10431056, https://doi.org/10.1029/2019EA000586.

  • Lehmann, J., D. Coumou, and K. Frieler, 2015: Increased record-breaking precipitation events under global warming. Climatic Change, 132, 501515, https://doi.org/10.1007/s10584-015-1434-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenartz, F., B. Mourre, A. Barth, J.-M. Beckers, L. Vandenbulcke, and M. Rixen, 2010: Enhanced ocean temperature forecast skills through 3-D super-ensemble multi-model fusion. Geophys. Res. Lett., 37, L19606, https://doi.org/10.1029/2010GL044591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leslie, L. M., and K. Fraedrich, 1990: Reduction of tropical cyclone position errors using an optimal combination of independent forecasts. Wea. Forecasting, 5, 158161, https://doi.org/10.1175/1520-0434(1990)005<0158:ROTCPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., Q. Duan, C. Miao, A. Ye, W. Gong, and Z. Di, 2017: A review on statistical postprocessing methods for hydrometeorological ensemble forecasting. Wiley Interdiscip. Rev.: Water, 4, e1246, https://doi.org/10.1002/wat2.1246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307, https://doi.org/10.3402/tellusa.v21i3.10086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., P. M. Ruti, and M. Rixen, 2018: Progress in subseasonal to seasonal prediction through a joint weather and climate community effort. npj Climate Atmos. Sci., 1, 4, https://doi.org/10.1038/S41612-018-0014-Z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pegion, K., and et al. , 2019: The Subseasonal Experiment (SubX): A multimodel subseasonal prediction experiment. Bull. Amer. Meteor. Soc., 100, 20432060, https://doi.org/10.1175/BAMS-D-18-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, T., X. Zhi, Y. Ji, L. Ji, and Y. Tian, 2020: Prediction skill of extended range 2-m maximum air temperature probabilistic forecasts using machine learning post-processing methods. Atmosphere, 11, 823, https://doi.org/10.3390/atmos11080823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qi, H., X. Zhi, Y. Ji, L. Ji, and Y. Tian, 2019: Comparative study on probabilistic forecasts of heavy rainfall in mountainous areas of the Wujiang River basin in China based on TIGGE data. Atmosphere, 10, 608, https://doi.org/10.3390/atmos10100608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., F. Balabdaoui, T. Gneiting, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, https://doi.org/10.1175/MWR2906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., and D. Coumou, 2011: Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA, 108, 17 90517 909, https://doi.org/10.1073/pnas.1101766108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozante, J. R., D. S. Moreira, R. C. M. Godoy, and A. A. Fernandes, 2014: Multi-model ensemble: Technique and validation. Geosci. Model Dev., 7, 23332343, https://doi.org/10.5194/gmd-7-2333-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, and L. Sun, 2015: Reduced risk of North American cold extremes due to continued Arctic sea ice loss. Bull. Amer. Meteor. Soc., 96, 14891503, https://doi.org/10.1175/BAMS-D-14-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, D. W., and T. N. Krishnamurti, 2003: Short- to medium-range superensemble precipitation forecasts using satellite products: 1. Deterministic forecasting. J. Geophys. Res., 108, 8383, https://doi.org/10.1029/2001JD001510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, J., and T. Palmer, 2011: Uncertainty in weather and climate prediction. Philos. Trans. Roy. Soc. London, 369A, 47514767, https://doi.org/10.1098/RSTA.2011.0161.

    • Search Google Scholar
    • Export Citation
  • Somerville, R. C. J., 1987: The predictability of weather and climate. Climatic Change, 11, 239246, https://doi.org/10.1007/BF00138802.

  • Tao, P., and Y. Zhang, 2019: Large-scale circulation features associated with the heat wave over Northeast China in summer 2018. Atmos. Oceanic Sci. Lett., 12, 254260, https://doi.org/10.1080/16742834.2019.1610326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vandenbulcke, L., and et al. , 2009: Super-ensemble techniques: Application to surface drift prediction. Prog. Oceanogr., 82, 149167, https://doi.org/10.1016/j.pocean.2009.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and A. W. Robertson, 2018: The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Climate Atmos. Sci., 1, 3, https://doi.org/10.1038/S41612-018-0013-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and et al. , 2017: The subseasonal to seasonal (S2S) prediction project database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WCRP, 2018: WWRP/WCRP sub-seasonal to Seasonal Prediction Project (S2S) phase II proposal (November 2018–December 2023). WCRP Rep. 11/2018, 38 pp., http://s2sprediction.net/file/documents_reports/P2_Pro.pdf.

  • WMO, 2019: The global climate in 2015–2019. Communication and Public Affairs Office, 24 pp., https://library.wmo.int/doc_num.php?explnum_id=9936.

  • Yun, W. T., L. Stefanova, A. K. Mitra, T. S. V. Vijaya Kumar, W. Dewar, and T. N. Krishnamurti, 2005: A multi-model superensemble algorithm for seasonal climate prediction using DEMETER forecasts. Tellus, 57A, 280289, https://doi.org/10.3402/tellusa.v57i3.14699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Qiang Sun, L. Magnusson, R. Buizza, S.-J. Lin, J.-H. Chen, and K. Emanuel, 2019: What is the predictability limit of midlatitude weather? J. Atmos. Sci., 76, 10771091, https://doi.org/10.1175/JAS-D-18-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., J. Chen, X. Zhi, and Y. Wang, 2015a: A comparison of ETKF and downscaling in a regional ensemble prediction system. Atmosphere, 6, 341360, https://doi.org/10.3390/atmos6030341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., X. Zhi, C. Jing, W. Ya-nan, and W. Yi, 2015b: Study of the modification of multi-model ensemble schemes for tropical cyclone forecasts. J. Trop. Meteor., 21, 389399.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and X. Zhi, 2015: Multimodel consensus forecasting of low temperature and icy weather over central and southern China in early 2008. J. Trop. Meteor., 21, 6775.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., F. Sielmann, K. Fraedrich, X. Zhu, and X. Zhi, 2015: Variability of winter extreme precipitation in Southeast China: Contributions of SST anomalies. Climate Dyn., 45, 25572570, https://doi.org/10.1007/s00382-015-2492-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhi, X., H. Qi, Y. Bai, and C. Lin, 2012: A comparison of three kinds of multimodel ensemble forecast techniques based on the TIGGE data. J. Meteor. Res., 26, 4151, https://doi.org/10.1007/S13351-012-0104-5.

    • Search Google Scholar
    • Export Citation
  • Zhu, S., F. Ge, Y. Fan, L. Zhang, F. Sielmann, K. Fraedrich, and X. Zhi, 2020a: Conspicuous temperature extremes over Southeast Asia: Seasonal variations under 1.5 °C and 2 °C global warming. Climatic Change, 160, 343360, https://doi.org/10.1007/s10584-019-02640-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, S., and et al. , 2020b: Seasonal temperature response over the Indochina Peninsula to a worst-case high emission forcing: A study with the regionally coupled model ROM. Theor. Appl. Climatol., 142, 613622, https://doi.org/10.1007/S00704-020-03345-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, S., and et al. , 2020c: Added value of the regionally coupled model ROM in the East Asian summer monsoon modeling. Theor. Appl. Climatol., 140, 375387, https://doi.org/10.1007/s00704-020-03093-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., 2005: Ensemble forecast: A new approach to uncertainty and predictability. Adv. Atmos. Sci., 22, 781788, https://doi.org/10.1007/BF02918678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., Z. Toth, R. Wobus, D. Richardson, and K. Mylne, 2002: The economic value of ensemble-based weather forecasts. Bull. Amer. Meteor. Soc., 83, 7384, https://doi.org/10.1175/1520-0477(2002)083<0073:TEVOEB>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., X. Zhou, M. Peña, W. Li, C. Melhauser, and D. Hou, 2017: Impact of sea surface temperature forcing on weeks 3 and 4 forecast skill in the NCEP Global Ensemble Forecasting System. Wea. Forecasting, 32, 21592174, https://doi.org/10.1175/WAF-D-17-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and et al. , 2018: Towards the improvement of subseasonal prediction in the National Centers for Environmental Prediction Global Ensemble Forecast System. J. Geophys. Res. Atmos., 123, 67326745, https://doi.org/10.1029/2018JD028506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zschenderlein, P., A. H. Fink, S. Pfahl, and H. Wernli, 2019: Processes determining heat waves across different European climates. Quart. J. Roy. Meteor. Soc., 145, 29732989, https://doi.org/10.1002/qj.3599.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 496 496 69
Full Text Views 89 89 2
PDF Downloads 101 101 2

Subseasonal Forecast of Surface Air Temperature Using Superensemble Approaches: Experiments over Northeast Asia for 2018

View More View Less
  • 1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, Chengdu University of Information Technology, Chengdu, China
  • | 3 WeatherOnline Institute of Meteorological Applications, Wuxi, China
  • | 4 Fujian Key Laboratory of Severe Weather, Fuzhou, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Bridging the gap between weather forecasting and climate prediction, subseasonal to seasonal (S2S) forecasts are of great importance yet currently of relatively poor quality. Using the S2S Prediction Project database, the study evaluates products derived from four operational centers of CMA, KMA, NCEP, and UKMO, and superensemble experiments including the straightforward ensemble mean (EMN), bias-removed ensemble mean (BREM), error-based superensemble (ESUP), and Kalman filter superensemble (KF), in forecasts of surface air temperature with lead times of 6–30 days over northeast Asia in 2018. Validations after the preprocessing of a 5-day running mean suggest that the KMA model shows the highest skill for either the control run or the ensemble mean. The nonequal weighted ESUP is slightly superior to BREM, whereas they both show larger biases than EMN after a lead time of 22 days. The KF forecast constantly outperforms the others, decreasing mean absolute errors by 0.2°–0.5°C relative to EMN. Forecast experiments of the 2018 northeast Asia heat wave reveal that the superensembles remarkably improve the raw forecasts featuring biases of >4°C. The prominent advancement of KF is further confirmed, showing the regionally averaged bias of ≤2°C and the hit rate of 2°C reaching up to 60% at a lead time of 22 days. The superensemble techniques, particularly the KF method of dynamically adjusting the weights in accordance with the latest information available, are capable of improving forecasts of spatiotemporal patterns of surface air temperature on the subseasonal time scale, which could extend the skillful prediction lead time of extreme events such as heat waves to about 3 weeks.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Xiefei Zhi, zhi@nuist.edu.cn; Fei Ge, figo@cuit.edu.cn

Abstract

Bridging the gap between weather forecasting and climate prediction, subseasonal to seasonal (S2S) forecasts are of great importance yet currently of relatively poor quality. Using the S2S Prediction Project database, the study evaluates products derived from four operational centers of CMA, KMA, NCEP, and UKMO, and superensemble experiments including the straightforward ensemble mean (EMN), bias-removed ensemble mean (BREM), error-based superensemble (ESUP), and Kalman filter superensemble (KF), in forecasts of surface air temperature with lead times of 6–30 days over northeast Asia in 2018. Validations after the preprocessing of a 5-day running mean suggest that the KMA model shows the highest skill for either the control run or the ensemble mean. The nonequal weighted ESUP is slightly superior to BREM, whereas they both show larger biases than EMN after a lead time of 22 days. The KF forecast constantly outperforms the others, decreasing mean absolute errors by 0.2°–0.5°C relative to EMN. Forecast experiments of the 2018 northeast Asia heat wave reveal that the superensembles remarkably improve the raw forecasts featuring biases of >4°C. The prominent advancement of KF is further confirmed, showing the regionally averaged bias of ≤2°C and the hit rate of 2°C reaching up to 60% at a lead time of 22 days. The superensemble techniques, particularly the KF method of dynamically adjusting the weights in accordance with the latest information available, are capable of improving forecasts of spatiotemporal patterns of surface air temperature on the subseasonal time scale, which could extend the skillful prediction lead time of extreme events such as heat waves to about 3 weeks.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Xiefei Zhi, zhi@nuist.edu.cn; Fei Ge, figo@cuit.edu.cn
Save