• Adams-Selin, R. D., and R. H. Johnson, 2010: Mesoscale surface pressure and temperature features associated with bow echoes. Mon. Wea. Rev., 138, 212227, https://doi.org/10.1175/2009MWR2892.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams-Selin, R. D., and R. H. Johnson, 2013: Examination of gravity waves associated with the 13 March 2003 bow echo. Mon. Wea. Rev., 141, 37353756, https://doi.org/10.1175/MWR-D-12-00343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and T. L. Mote, 2005: Derecho hazards in the United States. Bull. Amer. Meteor. Soc., 86, 15771592, https://doi.org/10.1175/BAMS-86-11-1577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., and M. St. Laurent, 2009: Bow echo mesovortices. Part I: Processes that influence their damaging potential. Mon. Wea. Rev., 137, 14971513, https://doi.org/10.1175/2008MWR2649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., C. S. Bouchard, R. W. Przybylinski, R. J. Trapp, and G. Schmocker, 2005: Damaging surface wind mechanism within the 10 June 2003 Saint Louis bow echo during BAMEX. Mon. Wea. Rev., 133, 22752296, https://doi.org/10.1175/MWR2973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentley, M. L., and T. L. Mote, 1998: A climatology of derecho-producing mesoscale convective systems in the central and eastern United States, 1986–95. Part I: Temporal and spatial distribution. Bull. Amer. Meteor. Soc., 79, 25272540, https://doi.org/10.1175/1520-0477(1998)079<2527:ACODPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernardet, L. R., and W. R. Cotton, 1998: Multiscale evolution of a derecho-producing mesoscale convective system. Mon. Wea. Rev., 126, 29913015, https://doi.org/10.1175/1520-0493(1998)126<2991:MEOADP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, B. T., D. B. Parsons, K. R. Haghi, and S. G. Castleberry, 2017: The structure, evolution, and dynamics of a nocturnal convective system simulated using the WRF-ARW model. Mon. Wea. Rev., 145, 31793201, https://doi.org/10.1175/MWR-D-16-0360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bothwell, P. D., J. A. Hart, and R. L. Thompson, 2002: An integrated three-dimensional objective analysis scheme in use at the Storm Prediction Center. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., JP3.1, https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47482.htm.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell, and J. Cooper, 1994: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9, 606618, https://doi.org/10.1175/1520-0434(1994)009<0606:OTEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, and T. C. Chen, 2007: Comparison of the diurnal precipitation cycle in convective-resolving and non-convection-resolving mesoscale models. Mon. Wea. Rev., 135, 34563473, https://doi.org/10.1175/MWR3467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., M. C. Coniglio, S. F. Corfidi, and S. J. Corfidi, 2007: Discrimination of mesoscale convective system environments using sounding observations. Wea. Forecasting, 22, 10451062, https://doi.org/10.1175/WAF1040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colman, B. R., 1990: Thunderstorms above frontal surfaces in environments without positive CAPE. Part I: A climatology. Mon. Wea. Rev., 118, 11031122, https://doi.org/10.1175/1520-0493(1990)118<1103:TAFSIE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and M. B. Richman, 2004: An observational study of derecho-producing convective systems. Wea. Forecasting, 19, 320337, https://doi.org/10.1175/1520-0434(2004)019<0320:AOSODC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and L. J. Wicker, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63, 12311252, https://doi.org/10.1175/JAS3681.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., S. F. Corfidi, and J. S. Kain, 2012: Views on applying RKW theory: An illustration using the 8 May 2009 derecho-producing convective system. Mon. Wea. Rev., 140, 10231043, https://doi.org/10.1175/MWR-D-11-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., S. J. Corfidi, and D. M. Schultz, 2008: Elevated convection and castellanus: Ambiguities, significance and questions. Wea. Forecasting, 23, 12801303, https://doi.org/10.1175/2008WAF2222118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., M. C. Coniglio, A. Cohen, and C. Mead, 2016: A proposed revision to the definition of “derecho.” Bull. Amer. Meteor. Soc., 97, 935949, https://doi.org/10.1175/BAMS-D-14-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craven, J. P., and H. E. Brooks, 2004: Baseline climatology of sounding derived parameters associated with deep moist convection. Natl. Wea. Dig., 28, 1324, http://www.nssl.noaa.gov/users/brooks/public_html/papers/cravenbrooksnwa.pdf.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1988: Trapping of low-level internal gravity waves. J. Atmos. Sci., 45, 15331541, https://doi.org/10.1175/1520-0469(1988)045<1533:TOLLIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., and M. W. Moncrieff, 1988: The effect of large-scale convergence on the generation and maintenance of deep moist convection. J. Atmos. Sci., 45, 36063624, https://doi.org/10.1175/1520-0469(1988)045<3606:TEOLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., K. W. Manning, R. E. Carbone, S. B. Trier, and J. D. Tuttle, 2003: Coherence of warm-season continental rainfall in numerical weather prediction models. Mon. Wea. Rev., 131, 26672679, https://doi.org/10.1175/1520-0493(2003)131<2667:COWCRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and et al. , 2004: The bow echo and MCV experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 10751094, https://doi.org/10.1175/BAMS-85-8-1075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • desJardins, M. L., K. F. Brill, and S. S. Schotz, 1991: Use of GEMPAK on UNIX workstations. Preprints, Seventh Int. Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, New Orleans, LA, Amer. Meteor. Soc., 449453.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and J. S. Evans, 2003: Proximity sounding analysis for derechos and supercells: An assessment of similarities and differences. Atmos. Res., 6768, 117133, https://doi.org/10.1016/S0169-8095(03)00047-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., J. T. Allen, and G. W. Carbin, 2018: Reliability and climatological impacts of convective wind estimations. J. Appl. Meteor. Climatol., 57, 18251845, https://doi.org/10.1175/JAMC-D-17-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. S., and C. A. Doswell III, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329342, https://doi.org/10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, A. J., and M. D. Parker, 2010: The response of simulated nocturnal convective systems to a developing low-level jet. J. Atmos. Sci., 67, 33843408, https://doi.org/10.1175/2010JAS3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1978: Manual of downburst identification for project NIMROD. Satellite and Mesometeorology Research Paper 156, Department of Geophysical Sciences, University of Chicago, 104 pp.

  • Fujita, T. T., and R. M. Wakimoto, 1981: Five scales of airflow associated with a series of downbursts of 16 July 1980. Mon. Wea. Rev., 109, 14381456, https://doi.org/10.1175/1520-0493(1981)109<1438:FSOAAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and et al. , 2017: The 2015 Plains Elevated Convection At Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guastini, C. T., and L. F. Bosart, 2016: Analysis of a progressive derecho climatology and associated formation environments. Mon. Wea. Rev., 144, 13631382, https://doi.org/10.1175/MWR-D-15-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haghi, K. R., D. B. Parsons, and A. Shapiro, 2017: Bores observed during IHOP_2002: The relationship of bores to the nocturnal environment. Mon. Wea. Rev., 145, 39293946, https://doi.org/10.1175/MWR-D-16-0415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hampshire, N. L., R. M. Mosier, T. M. Ryan, and D. E. Cavanaugh, 2018: Relationship of low-level instability and tornado damage rating based on observed soundings. J. Oper. Meteor., 6, 112, https://doi.org/10.15191/nwajom.2018.0601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidke, P., 1926: Calculation of the success and goodness of strong wind forecasts in the storm warning service. Geogr. Ann., 8, 301349.

    • Search Google Scholar
    • Export Citation
  • Hitchcock, S. M., R. S. Schumacher, G. R. Herman, M. C. Coniglio, M. D. Parker, and C. L. Ziegler, 2019: Evolution of pre- and postconvective environment profiles from mesoscale convective systems during PECAN. Mon. Wea. Rev., 147, 23292354, https://doi.org/10.1175/MWR-D-18-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horgan, K. L., D. M. Schultz, J. E. Hales, S. F. Corfidi, and R. H. Johns, 2007: A five-year climatology of elevated severe convective storms in the United States east of the Rocky Mountains. Wea. Forecasting, 22, 10311044, https://doi.org/10.1175/WAF1032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, R. P., P. M. Markowski, and J. M. Fritsch, 2006: Bow echo sensitivity to ambient moisture and cold pool strength. Mon. Wea. Rev., 134, 950964, https://doi.org/10.1175/MWR3109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., 1993: Meteorological conditions associated with bow echo development in convective storms. Wea. Forecasting, 8, 294299, https://doi.org/10.1175/1520-0434(1993)008<0294:MCAWBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and W. D. Hirt, 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2, 3249, https://doi.org/10.1175/1520-0434(1987)002<0032:DWCIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., W. Feltz, F. Fabry, M. Pagowski, B. Geerts, K. M. Bedka, D. O. Miller, and J. W. Wilson, 2008: Turbulent mixing processes in atmospheric bores and solitary waves deduced from profiling systems and numerical simulation. Mon. Wea. Rev., 136, 13731400, https://doi.org/10.1175/2007MWR2252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuchera, E. L., and M. D. Parker, 2006: Severe convective wind environments. Wea. Forecasting, 21, 595612, https://doi.org/10.1175/WAF931.1.

  • Lagerquist, R., A. McGovern, and T. Smith, 2017: Machine learning for real-time prediction of damaging straight-line convective wind. Wea. Forecasting, 32, 21752193, https://doi.org/10.1175/WAF-D-17-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., K. A. Browning, J. C. Nicol, D. J. Parker, E. G. Norton, A. M. Blyth, U. Corsmeier, and F. M. Perry, 2010: Multi-sensor observations of a wave beneath an impacting rear-inflow jet in an elevated mesoscale convective system. Quart. J. Roy. Meteor. Soc., 136, 17881812, https://doi.org/10.1002/qj.669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., S. B. Trier, T. M. Weckwerth, and J. W. Wilson, 2011: Observations of elevated convection initiation leading to a surface based squall line during 13 June IHOP_2002. Mon. Wea. Rev., 139, 247271, https://doi.org/10.1175/2010MWR3422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendenhall, W. M., and T. L. Sincich, 2007: Statistics for Engineering and the Sciences. CRC Press, 1072 pp.

  • Parker, M. D., 2008: Response of simulated squall lines to low-level cooling. J. Atmos. Sci., 65, 13231341, https://doi.org/10.1175/2007JAS2507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., B. S. Borchardt, R. L. Miller, and C. L. Ziegler, 2020: Simulated evolution and severe wind production by the 25–26 June 2015 nocturnal MCS from PECAN. Mon. Wea. Rev., 148, 183209, https://doi.org/10.1175/MWR-D-19-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., K. R. Haghi, K. T. Halbert, B. Elmer, and J. Wang, 2019: The potential role of atmospheric bores and gravity waves in the initiation and maintenance of nocturnal convection over the Southern Great Plains. J. Atmos. Sci., 76, 4368, https://doi.org/10.1175/JAS-D-17-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2016: Dynamics governing a simulated mesoscale convective system with a training convective line. J. Atmos. Sci., 73, 26432664, https://doi.org/10.1175/JAS-D-15-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Przybylinski, R., 1995: The bow echo: Observations, numerical simulations, and severe weather detection methods. Wea. Forecasting, 10, 203218, https://doi.org/10.1175/1520-0434(1995)010<0203:TBEONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reames, L. J., 2017: Diurnal variations in severe weather forecast parameters of Rapid Update Cycle-2 tornado proximity environments. Wea. Forecasting, 32, 743761, https://doi.org/10.1175/WAF-D-16-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., P. N. Schumacher, and C. A. Doswell III, 2000: The intricacies of instabilities. Mon. Wea. Rev., 128, 41434148, https://doi.org/10.1175/1520-0493(2000)129<4143:TIOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2009: Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting, 24, 555574, https://doi.org/10.1175/2008WAF2222173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, D. W., 2015: Multivariate Density Estimation: Theory, Practice, and Visualization. 2nd ed. Wiley, 384 pp.

  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, and C. M. Mead, 2004: An update to the supercell composite and significant tornado parameters. Preprints, 22nd Conf. Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P8.1, https://ams.confex.com/ams/11aram22sls/techprogram/paper_82100.htm.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. V. Murphey, A. Nester, D. P. Jorgensen, and N. T. Atkins, 2006: High winds generated by bow echoes. Part I: Overview of the Omaha bow echo 5 July 2003 storm during BAMEX. Mon. Wea. Rev., 134, 27932812, https://doi.org/10.1175/MWR3215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. Hanesiak, J. W. Wilson, S. B. Trier, S. K. Degelia, W. A. Gallus, R. D. Roberts, and X. Wang, 2019: Nocturnal convection initiation during PECAN 2015. Bull. Amer. Meteor. Soc., 100, 22232239, https://doi.org/10.1175/BAMS-D-18-0299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645670, https://doi.org/10.1175/1520-0469(1993)050<0645:TGOSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. J. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes. Part I: Overview and dependence on environmental shear. Mon. Wea. Rev., 131, 27792803, https://doi.org/10.1175/1520-0493(2003)131<2779:LMWSLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437, https://doi.org/10.1175/2007WAF2007005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., R. J. Trapp, and N. T. Atkins, 2006: Radar and damage analysis of severe bow echoes observed during BAMEX. Mon. Wea. Rev., 134, 791806, https://doi.org/10.1175/MWR3100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, https://doi.org/10.1175/MWR3069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 270 270 27
Full Text Views 83 83 7
PDF Downloads 106 106 8

Differences between Severe and Nonsevere Warm-Season, Nocturnal Bow Echo Environments

View More View Less
  • 1 Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Nocturnal bow echoes can produce wind damage, even in situations where elevated convection occurs. Accurate forecasts of wind potential tend to be more challenging for operational forecasters than for daytime bows because of incomplete understanding of how elevated convection interacts with the stable boundary layer. The present study compares the differences in warm-season, nocturnal bow echo environments in which high intensity [>70 kt (1 kt ≈ 0.51 m s−1)] severe winds (HS), low intensity (50–55 kt) severe winds (LS), and nonsevere winds (NS) occurred. Using a sample of 132 events from 2010 to 2018, 43 forecast parameters from the SPC mesoanalysis system were examined over a 120 km × 120 km region centered on the strongest storm report or most pronounced bowing convective segment. Severe composite parameters are found to be among the best discriminators between all severity types, especially derecho composite parameter (DCP) and significant tornado parameter (STP). Shear parameters are significant discriminators only between severe and nonsevere cases, while convective available potential energy (CAPE) parameters are significant discriminators only between HS and LS/NS bow echoes. Convective inhibition (CIN) is among the worst discriminators for all severity types. The parameters providing the most predictive skill for HS bow echoes are STP and most unstable CAPE, and for LS bow echoes these are the V wind component at best CAPE (VMXP) level, STP, and the supercell composite parameter. Combinations of two parameters are shown to improve forecasting skill further, with the combination of surface-based CAPE and 0–6-km U shear component, and DCP and VMXP, providing the most skillful HS and LS forecasts, respectively.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WAF-D-20-0137.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ezio Luca Mauri, emauri@iastate.edu

Abstract

Nocturnal bow echoes can produce wind damage, even in situations where elevated convection occurs. Accurate forecasts of wind potential tend to be more challenging for operational forecasters than for daytime bows because of incomplete understanding of how elevated convection interacts with the stable boundary layer. The present study compares the differences in warm-season, nocturnal bow echo environments in which high intensity [>70 kt (1 kt ≈ 0.51 m s−1)] severe winds (HS), low intensity (50–55 kt) severe winds (LS), and nonsevere winds (NS) occurred. Using a sample of 132 events from 2010 to 2018, 43 forecast parameters from the SPC mesoanalysis system were examined over a 120 km × 120 km region centered on the strongest storm report or most pronounced bowing convective segment. Severe composite parameters are found to be among the best discriminators between all severity types, especially derecho composite parameter (DCP) and significant tornado parameter (STP). Shear parameters are significant discriminators only between severe and nonsevere cases, while convective available potential energy (CAPE) parameters are significant discriminators only between HS and LS/NS bow echoes. Convective inhibition (CIN) is among the worst discriminators for all severity types. The parameters providing the most predictive skill for HS bow echoes are STP and most unstable CAPE, and for LS bow echoes these are the V wind component at best CAPE (VMXP) level, STP, and the supercell composite parameter. Combinations of two parameters are shown to improve forecasting skill further, with the combination of surface-based CAPE and 0–6-km U shear component, and DCP and VMXP, providing the most skillful HS and LS forecasts, respectively.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WAF-D-20-0137.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ezio Luca Mauri, emauri@iastate.edu

Supplementary Materials

    • Supplemental Materials (PDF 188 KB)
Save