• Bengtsson, L., and et al. , 2019: Convectively coupled equatorial wave simulations using the ECMWF IFS and the NOAA GFS cumulus convection schemes in the NOAA GFS model. Mon. Wea. Rev., 147, 40054025, https://doi.org/10.1175/MWR-D-19-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castanheira, J. M., and C. A. F. Marques, 2015: Convectively coupled equatorial-wave diagnosis using three-dimensional normal modes. Quart. J. Roy. Meteor. Soc., 141, 27762792, https://doi.org/10.1002/qj.2563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias, J., and G. N. Kiladis, 2014: Influence of the basic state zonal flow on convectively coupled equatorial waves. Geophys. Res. Lett., 41, 69046913, https://doi.org/10.1002/2014GL061476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias, J., M. Gehne, G. N. Kiladis, N. Sakaeda, P. Bechtold, and T. Haiden, 2018: Equatorial waves and the skill of NCEP and ECMWF numerical weather prediction systems. Mon. Wea. Rev., 146, 17631784, https://doi.org/10.1175/MWR-D-17-0362.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrett, S., G.-Y. Yang, S. Woolnough, M. S. Methven, K. Hodges, and C. Holloway, 2020: Linking extreme precipitation in Southeast Asia to equatorial waves. Quart. J. Roy. Meteor. Soc., 146, 665684, https://doi.org/10.1002/qj.3699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gehne, M., and R. Kleeman, 2012: Spectral analysis of tropical atmospheric dynamical variables using a linear shallow-water modal decomposition. J. Atmos. Sci., 69, 23002316, https://doi.org/10.1175/JAS-D-10-05008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat induced tropical circulations. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalk, J., and et al. , 2010: A framework for assessing operational Madden–Julian Oscillation forecasts: A CLIVAR MJO working group project. Bull. Amer. Meteor. Soc., 91, 12471258, https://doi.org/10.1175/2010BAMS2816.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1982: Space-time spectral analysis and its applications to atmospheric waves. J. Meteor. Soc. Japan, 60, 156171, https://doi.org/10.2151/jmsj1965.60.1_156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1991: The structure and annual variation of antisymmetric fluctuations of tropical convection and their association with Rossby–gravity waves. J. Atmos. Sci., 48, 21272140, https://doi.org/10.1175/1520-0469(1991)048<2127:TSAAVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and G.-Y. Yang, 2016: The longitudinal variation of equatorial waves due to propagation on a zonal varying flow. J. Atmos. Sci., 73, 605620, https://doi.org/10.1175/JAS-D-15-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., C. Chou, and R. Huang, 2013: The activity of convectively coupled equatorial waves in CMIP3 global climate models. Theor. Appl. Climatol., 112, 697711, https://doi.org/10.1007/s00704-012-0761-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., J. C. Schreck, J. A. Ridout, M. Flatau, N. P. Barton, E. J. Metzger, and C. A. Reynolds, 2018: Subseasonal forecasts of convectively coupled equatorial waves and the MJO: Activity and predictive skill. Mon. Wea. Rev., 146, 23372360, https://doi.org/10.1175/MWR-D-17-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judt, F., 2020: Atmospheric predictability of the tropics, middle latitudes, and polar regions explored through global storm-resolving simulations. J. Atmos. Sci., 77, 257276, https://doi.org/10.1175/JAS-D-19-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., 2014: An introduction to combined Fourier–wavelet transform and its application to convectively coupled equatorial waves. Climate Dyn., 43, 13391356, https://doi.org/10.1007/s00382-013-1949-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., G. N. Kiladis, J. Dias, and T. Nasuno, 2018: Convectively coupled equatorial waves within the MJO during CINDY/DYNAMO: Slow Kelvin waves as building blocks. Climate Dyn., 50, 42114230, https://doi.org/10.1007/s00382-017-3869-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and S. N. Stechmann, 2020: Predictability of tropical rainfall and waves: Estimates from observational data. Quart. J. Roy. Meteor. Soc., 146, 16681684, https://doi.org/10.1002/qj.3759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and H. H. Hendon, 1990: Synoptic-scale disturbances near the equator. J. Atmos. Sci., 47, 14631479, https://doi.org/10.1175/1520-0469(1990)047<1463:SSDNTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and et al. , 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, https://doi.org/10.1175/JCLI3735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magaña, V., and M. Yanai, 1995: Mixed Rossby–gravity waves triggered by lateral forcing. J. Atmos. Sci., 52, 14731486, https://doi.org/10.1175/1520-0469(1995)052<1473:MRWTBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marques, C. A. F., and J. M. Castanheira, 2018: Diagnosis of free and convectively coupled equatorial waves. Math. Geosci., 50, 585606, https://doi.org/10.1007/s11004-018-9729-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pires, P., J.-L. Redelsperger, and J.-P. Lafore, 1997: Equatorial atmospheric waves and their association to convection. Mon. Wea. Rev., 125, 11671184, https://doi.org/10.1175/1520-0493(1997)125<1167:EAWATA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redelsperger, J.-L., and et al. , 1998: Review of convection in TOGA-COARE. Proc. CLIVAR/GEWEX COARE98 Conf., Boulder, CO, WCRP, 16–42.

  • Riley, E. M., B. E. Mapes, and S. N. Tulich, 2011: Clouds associated with the Madden–Julian oscillation: A new perspective from CloudSat. J. Atmos. Sci., 68, 30323051, https://doi.org/10.1175/JAS-D-11-030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringer, M. A., and et al. , 2006: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part II: Aspects of variability and regional climate. J. Climate, 19, 13021326, https://doi.org/10.1175/JCLI3713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2008: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65, 13421359, https://doi.org/10.1175/2007JAS2345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2012: Tracking and prediction of large-scale organized tropical convection by spectrally focused two-step space–time EOF analysis. Quart. J. Roy. Meteor. Soc., 138, 919931, https://doi.org/10.1002/qj.962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132, https://doi.org/10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and et al. , 2003: How good is the Hadley Centre climate model? Research at CGAM on identifying and understanding model systematic errors: 1999-2002, CGAM/NCAS Rep., 60 pp.

  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 3053, https://doi.org/10.1175/1520-0469(2002)059<0030:OOACCK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., P. T. Haertel, and G. N. Kiladis, 2010: An analysis of convectively coupled Kelvin waves in 20 WCRRP CMIP3 global coupled climate models. J. Climate, 23, 30313056, https://doi.org/10.1175/2009JCLI3422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994a: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433449, https://doi.org/10.2151/jmsj1965.72.3_433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994b: Large-scale cloud disturbances associated with equatorial waves. Part II: Westward propagating inertio-gravity waves. J. Meteor. Soc. Japan, 72, 451465, https://doi.org/10.2151/jmsj1965.72.3_451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., and T. S. Nitta, 1993: 3–5 day-period disturbances coupled with convection over the tropical Pacific Ocean. J. Meteor. Soc. Japan, 71, 221246, https://doi.org/10.2151/jmsj1965.71.2_221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and V. E. Kousky, 1968: Observational evidence of Kelvin waves in the tropical stratosphere. J. Atmos. Sci., 25, 900907, https://doi.org/10.1175/1520-0469(1968)025<0900:OEOKWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D., and et al. , 2017: The Met Office unified model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geosci. Model Dev., 10, 14871520, https://doi.org/10.5194/gmd-10-1487-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and K. M. Weickmann, 2001: Real-time monitoring and prediction of modes of coherent synoptic to intraseasonal tropical variability. Mon. Wea. Rev., 129, 26772694, https://doi.org/10.1175/1520-0493(2001)129<2677:RTMAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640, https://doi.org/10.1175/1520-0469(2000)057<0613:LSDFAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N., and et al. , 2014: An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quart. J. Roy. Meteor. Soc., 140, 15051520, https://doi.org/10.1002/qj.2235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., and T. Maruyama, 1966: Stratospheric wave disturbances propagating over the equatorial Pacific. J. Meteor. Soc. Japan, 44, 291294, https://doi.org/10.2151/jmsj1965.44.5_291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. J. Hoskins, and J. M. Slingo, 2003: Convectively coupled equatorial waves: A new methodology for identifying wave structures in observational data. J. Atmos. Sci., 60, 16371654, https://doi.org/10.1175/1520-0469(2003)060<1637:CCEWAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. J. Hoskins, and J. M. Slingo, 2007a: Convectively coupled equatorial waves. Part I: Horizontal structure. J. Atmos. Sci., 64, 34063423, https://doi.org/10.1175/JAS4017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. J. Hoskins, and J. M. Slingo, 2007b: Convectively coupled equatorial waves. Part II: Propagation characteristics. J. Atmos. Sci., 64, 34243437, https://doi.org/10.1175/JAS4018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. J. Hoskins, and J. M. Slingo, 2007c: Convectively coupled equatorial waves. Part III: Synthesis structures and their forcing and evolution. J. Atmos. Sci., 64, 34383451, https://doi.org/10.1175/JAS4019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., J. M. Slingo, and B. J. Hoskins, 2009: Convectively coupled equatorial waves in high resolution Hadley Centre climate models. J. Climate, 22, 18971919, https://doi.org/10.1175/2008JCLI2630.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. J. Hoskins, and J. M. Slingo, 2011: Equatorial waves in opposite QBO phases. J. Atmos. Sci., 68, 839862, https://doi.org/10.1175/2010JAS3514.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. J. Hoskins, and L. Gray, 2012: The influence of the QBO on the propagation of equatorial waves into the stratosphere. J. Atmos. Sci., 69, 29592982, https://doi.org/10.1175/JAS-D-11-0342.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., J. Methven, S. J. Woolnough, K. Hodges, and B. J. Hoskins, 2018: Linking African easterly wave activity with equatorial waves and the influence of Rossby waves from the Southern Hemisphere. J. Atmos. Sci., 75, 17831809, https://doi.org/10.1175/JAS-D-17-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., and B. E. Mapes, 2012: Differences between more divergent and more rotational types of convectively coupled equatorial waves. Part II: Composite analysis based on space–time filtering. J. Atmos. Sci., 69, 1734, https://doi.org/10.1175/JAS-D-11-034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ying, Y., and F. Zhang, 2017: Practical and intrinsic predictability of multiscale weather and convectively coupled equatorial waves during the active phase of an MJO. J. Atmos. Sci., 74, 37713785, https://doi.org/10.1175/JAS-D-17-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Žagar, N., J. Tribbia, J. L. Anderson, and K. Raeder, 2009: Uncertainties of estimates of inertio-gravity energy in the atmosphere. Part I: Intercomparison of four analysis datasets. Mon. Wea. Rev., 137, 38373857, https://doi.org/10.1175/2009MWR2815.1; Corrigendum, 138, 2476–2477, https://doi.org/10.1175/2010MWR3256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Žagar, N., A. Kasahara, K. Terasaki, J. Tribbia, and H. Tanaka, 2015: Normal-mode function representation of global 3-D data sets: Open-access software for the atmospheric research community. Geosci. Model Dev., 8, 11691195, https://doi.org/10.5194/gmd-8-1169-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zangvil, A., 1975: Temporal and spatial behavior of large-scale disturbances in tropical cloudiness deduced from satellite brightness data. Mon. Wea. Rev., 103, 904920, https://doi.org/10.1175/1520-0493(1975)103<0904:TASBOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zangvil, A., and M. Yanai, 1980: Upper tropospheric waves in the tropics. Part I: Dynamical analysis in the wavenumber-frequency domain. J. Atmos. Sci., 37, 283298, https://doi.org/10.1175/1520-0469(1980)037<0283:UTWITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zangvil, A., and M. Yanai, 1981: Upper tropospheric waves in the tropics. Part II: Association with clouds in the wavenumber-frequency domain. J. Atmos. Sci., 38, 939953, https://doi.org/10.1175/1520-0469(1981)038<0939:UTWITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 398 398 38
Full Text Views 109 109 8
PDF Downloads 129 129 8

Real-Time Identification of Equatorial Waves and Evaluation of Waves in Global Forecasts

View More View Less
  • 1 National Centre of Atmospheric Science, University of Reading, Reading, United Kingdom
  • | 2 Department of Meteorology, University of Reading, Reading, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A novel technique is developed to identify equatorial waves in analyses and forecasts. In a real-time operational context, it is not possible to apply a frequency filter based on a wide centered time window due to the lack of future data. Therefore, equatorial wave identification is performed based primarily on spatial projection onto wave mode horizontal structures. Spatial projection alone cannot distinguish eastward- from westward-moving waves, so a broadband frequency filter is also applied. The novelty in the real-time technique is to off-center the time window needed for frequency filtering, using forecasts to extend the window beyond the current analysis. The quality of this equatorial wave diagnosis is evaluated. First, the “edge effect” arising because the analysis is near the end of the filter time window is assessed. Second, the impact of using forecasts to extend the window beyond the current date is quantified. Both impacts are shown to be small referenced to wave diagnosis based on a centered time window of reanalysis data. The technique is used to evaluate the skill of the Met Office forecast system in 2015–18. Global forecasts exhibit substantial skill (correlation > 0.6) in equatorial waves, to at least day 4 for Kelvin waves and day 6 for westward mixed Rossby–gravity (WMRG), and meridional mode number n = 1 and n = 2 Rossby waves. A local wave phase diagram is introduced that is useful to visualize and validate wave forecasts. It shows that in the model Kelvin waves systematically propagate too fast, and there is a 25% underestimate of amplitude in Kelvin and WMRG waves over the central Pacific.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gui-Ying Yang, g.y.yang@reading.ac.uk

Abstract

A novel technique is developed to identify equatorial waves in analyses and forecasts. In a real-time operational context, it is not possible to apply a frequency filter based on a wide centered time window due to the lack of future data. Therefore, equatorial wave identification is performed based primarily on spatial projection onto wave mode horizontal structures. Spatial projection alone cannot distinguish eastward- from westward-moving waves, so a broadband frequency filter is also applied. The novelty in the real-time technique is to off-center the time window needed for frequency filtering, using forecasts to extend the window beyond the current analysis. The quality of this equatorial wave diagnosis is evaluated. First, the “edge effect” arising because the analysis is near the end of the filter time window is assessed. Second, the impact of using forecasts to extend the window beyond the current date is quantified. Both impacts are shown to be small referenced to wave diagnosis based on a centered time window of reanalysis data. The technique is used to evaluate the skill of the Met Office forecast system in 2015–18. Global forecasts exhibit substantial skill (correlation > 0.6) in equatorial waves, to at least day 4 for Kelvin waves and day 6 for westward mixed Rossby–gravity (WMRG), and meridional mode number n = 1 and n = 2 Rossby waves. A local wave phase diagram is introduced that is useful to visualize and validate wave forecasts. It shows that in the model Kelvin waves systematically propagate too fast, and there is a 25% underestimate of amplitude in Kelvin and WMRG waves over the central Pacific.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gui-Ying Yang, g.y.yang@reading.ac.uk
Save