• Atkins, N. T., and R. M. Wakimoto, 1991: Wet microburst activity over the southeastern United States: Implications for forecasting. Wea. Forecasting, 6, 470482, https://doi.org/10.1175/1520-0434(1991)006<0470:WMAOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bateman, M., and D. Mach, 2020: Preliminary detection efficiency and false alarm rate assessment of the Geostationary Lightning Mapper on the GOES-16 satellite. J. Appl. Remote Sens., 14, 032406, https://doi.org/10.1117/1.JRS.14.032406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K., J. Brunner, R. Dworak, W. Feltz, J. Otkin, and T. Greenwald, 2010: Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. J. Appl. Meteor. Climatol., 49, 181202, https://doi.org/10.1175/2009JAMC2286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K., C. Wang, R. Rogers, L. D. Carey, W. Feltz, and J. Kanak, 2015: Examining deep convective cloud evolution using total lightning, WSR-88D, and GOES-14 Super Rapid Scan datasets. Wea. Forecasting, 30, 571590, https://doi.org/10.1175/WAF-D-14-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruning, E., and D. R. MacGorman, 2013: Theory and observations of controls on lightning flash size spectra. J. Atmos. Sci., 70, 40124029, https://doi.org/10.1175/JAS-D-12-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruning, E., V. Salinas, V. Sullivan, S. Gunter, and J. Schroeder, 2014: Observations of turbulent kinematics and lightning-inferred electric potential structure in a severe squall line. 23rd Int. Lightning Detection Conf./Fifth Int. Lightning Meteorology Conf., Tucson, AZ, Vaisala, http://www.vaisala.com/Vaisala%20Documents/Scientific%20papers/2014%20ILDC%20ILMC/ILMC-Friday/Bruning%20et%20al-Observations%20of%20turbulent%20kinematics%20and%20lightning-2014-ILDC-ILMC.pdf.

  • Buechler, D. E., and S. J. Goodman, 1990: Echo size and asymmetry: Impact on NEXRAD storm identification. J. Appl. Meteor., 29, 962969, https://doi.org/10.1175/1520-0450(1990)029<0962:ESAAIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burlando, M., D. Romanić, G. Solari, H. Hangan, and S. Zhang, 2017: Field data analysis and weather scenario of a downburst event in Livorno, Italy, on 1 October 2012. Mon. Wea. Rev., 145, 35073527, https://doi.org/10.1175/MWR-D-17-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham Jr., 1949: The Thunderstorm. U.S. Government Printing Office, 287 pp.

  • Caplan, S. J., A. J. Bedard Jr., and M. T. Decker, 1990: The 700-500 mb lapse rate as an index of microburst probability: An application for thermodynamic profilers. J. Appl. Meteor., 29, 680687, https://doi.org/10.1175/1520-0450(1990)029<0680:TMLRAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caracena, F., and M. W. Maier, 1987: Analysis of a microburst in the FACE meteorological mesonetwork in Southern Florida. Mon. Wea. Rev., 115, 969985, https://doi.org/10.1175/1520-0493(1987)115<0969:AOAMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 1996: A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteor. Atmos. Phys., 59, 3364, https://doi.org/10.1007/BF01032000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and et al. , 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108, 4005, https://doi.org/10.1029/2002JD002347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and A. K. Heidinger, 2013: Evolution of severe and nonsevere convection inferred from GOES-derived cloud properties. J. Appl. Meteor. Climatol., 52, 20092023, https://doi.org/10.1175/JAMC-D-12-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and D. T. Lindsey, 2014: An empirical model for assessing the severe weather potential of developing convection. Wea. Forecasting, 29, 639653, https://doi.org/10.1175/WAF-D-13-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., and et al. , 2018: The NOAA/CIMSS ProbSevere Model: Incorporation of total lightning and validation. Wea. Forecasting, 33, 331345, https://doi.org/10.1175/WAF-D-17-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dworak, R., K. Bedka, J. Brunner, and W. Feltz, 2012: Comparison between GOES-12 overshooting-top detection, WSR-88D radar reflectivity, and severe storm reports. Wea. Forecasting, 27, 684699, https://doi.org/10.1175/WAF-D-11-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., 1989: Environmental conditions associated with the Dallas microburst storm determined from satellite soundings. Wea. Forecasting, 4, 469484, https://doi.org/10.1175/1520-0434(1989)004<0469:ECAWTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., J. P. Nelson III, M. R. Witiw, L. Bottos, and W. P. Roeder, 2000: Experimental GOES sounder products for the assessment of downburst potential. Wea. Forecasting, 15, 527542, https://doi.org/10.1175/1520-0434(2000)015<0527:EGSPFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., J. McCarthy, W. Frost, and H. P. Chang, 1986: A high resolution spatial and temporal multiple Doppler analysis of a microburst and its application to aircraft flight simulation. J. Climate Appl. Meteor., 25, 13981425, https://doi.org/10.1175/1520-0450(1986)025<1398:AHRSAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1985: The Downburst: Microburst and Macroburst. SMRP Research Paper 210, University of Chicago, 122 pp.

  • Fujita, T. T., and H. R. Byers, 1977: Spearhead echo and downburst in the crash of an airliner. Mon. Wea. Rev., 105, 129146, https://doi.org/10.1175/1520-0493(1977)105<0129:SEADIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., and F. Caracena, 1977: An analysis of three weather-related aircraft accidents. Bull. Amer. Meteor. Soc., 58, 11641181, https://doi.org/10.1175/1520-0477(1977)058<1164:AAOTWR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., and R. M. Wakimoto, 1981: Five scales of airflow associated with a series of downbursts on 16 July 1980. Mon. Wea. Rev., 109, 14381456, https://doi.org/10.1175/1520-0493(1981)109<1438:FSOAAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., and R. M. Wakimoto, 1982: Effects of miso- and mesoscale obstructions on PAM winds obtained during project NIMROD. J. Appl. Meteor., 21, 840858, https://doi.org/10.1175/1520-0450(1982)021<0840:EOMAMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., and R. M. Wakimoto, 1983: Microbursts in JAWS depicted by Doppler radars, PAM, and aerial photographs. Preprints, 21st Conf. on Radar Meteorology, Edmonton, AB, Canada, Amer. Meteor. Soc., 638–645.

  • Geerts, B., 2001: Estimating downburst-related maximum surface wind speeds by means of proximity soundings in New South Wales, Australia. Wea. Forecasting, 16, 261269, https://doi.org/10.1175/1520-0434(2001)016<0261:EDRMSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., D. E. Buechler, P. D. Wright, and W. D. Rust, 1988: Lightning and precipitation history of a microburst-producing storm. Geophys. Res. Lett., 15, 11851188, https://doi.org/10.1029/GL015i011p01185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and et al. , 2005: The North Alabama Lightning Mapping Array: Recent severe storm observations and future prospects. Atmos. Res., 76, 423437, https://doi.org/10.1016/j.atmosres.2004.11.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., D. Mach, W. Koshak, and R. Blakeslee, 2012: Algorithm Theoretical Basis Document: GLM lightning cluster-filter algorithm. NOAA/NESDIS, 73 pp., https://www.star.nesdis.noaa.gov/goesr/docs/ATBD/LCFA.pdf.

  • Goodman, S. J., and et al. , 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, https://doi.org/10.1016/j.atmosres.2013.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grundstein, A., M. Shepherd, P. Miller, and S. E. Sarnat, 2017: The role of mesoscale-convective processes in explaining the 21 November 2016 epidemic thunderstorm asthma event in Melbourne, Australia. J. Appl. Meteor. Climatol., 56, 13371343, https://doi.org/10.1175/JAMC-D-17-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, R. J., J. R. Mecikalski, W. M. MacKenzie Jr., P. A. Durkee, and K. E. Nielsen, 2010: The definition of GOES infrared lightning initiation interest fields. J. Appl. Meteor. Climatol., 49, 25272543, https://doi.org/10.1175/2010JAMC2575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R., 1987: The microbursts of 22 June 1982 in JAWS. J. Atmos. Sci., 44, 16461665, https://doi.org/10.1175/1520-0469(1987)044<1646:TMOJIJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchins, M. L., R. H. Holzworth, K. S. Virts, J. M. Wallace, and S. Heckman, 2013: Radiated VLF energy differences of land and oceanic lightning. Geophys. Res. Lett., 40, 23902394, https://doi.org/10.1002/grl.50406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobson, E. A., and E. P. Krider, 1976: Electrostatic field changes produced by Florida lightning. J. Atmos. Sci., 33, 103117, https://doi.org/10.1175/1520-0469(1976)033<0103:EFCPBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayaratne, E. R., C. P. R. Saunders, and J. Hallett, 1983: Laboratory studies of the charging of soft-hail during ice crystal interactions. Quart. J. Roy. Meteor. Soc., 109, 609630, https://doi.org/10.1002/qj.49710946111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46, 621640, https://doi.org/10.1175/1520-0469(1989)046<0621:VVCOOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kane, R. J., 1991: Correlating lightning to severe local storms in the northeastern United States. Wea. Forecasting, 6, 312, https://doi.org/10.1175/1520-0434(1991)006<0003:CLTSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshak, W., D. Mach, M. Bateman, P. Armstrong, and K. Virts, 2018: Product performance guide for data users: GOES-16 GLM Level 2 data full validation data quality. NASA, 16 pp., https://www.ncdc.noaa.gov/sites/default/files/attachments/GOES16_GLM_FullValidation_ProductPerformanceGuide.pdf.

  • Krehbiel, P. R., 1986: The electrical structure of thunderstorms. The Earth’s Electrical Environment, National Academy Press, 90–113.

  • Kuchera, E. L., and M. D. Parker, 2006: Severe convective wind environments. Wea. Forecasting, 21, 595612, https://doi.org/10.1175/WAF931.1.

  • Kuhlman, K. M., T. M. Smith, and S. T. Irwin, 2010: Lightning activity and charge structure of microburst producing storms. 21st Int. Lightning Detection Conf./Third Int. Lightning Meteorology Conf., Orlando, FL, Vaisala, http://www.vaisala.com/Vaisala%20Documents/Scientific%20papers/11.Kuhlman,%20Smith,%20Irwin.pdf.

  • Lensky, I. M., and D. Rosenfeld, 2006: The time-space exchangeability of satellite retrieved relations between cloud top temperature and particle effective radius. Atmos. Chem. Phys., 6, 28872894, https://doi.org/10.5194/acp-6-2887-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., and P. R. Krehbeil, 1979: Doppler radar and radio observations of thunderstorms. IEEE Trans. Geosci. Electron., 17, 162171, https://doi.org/10.1109/TGE.1979.294644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., and E. Williams, 1985: Thunderstorm electrification: A case study. J. Geophys. Res., 90, 60716078, https://doi.org/10.1029/JD090iD04p06071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and R. G. Hughes, 1987: Structural features of a microburst-producing storm in Colorado revealed by JAWS dual-Doppler radars. J. Atmos. Sci., 44, 36403655, https://doi.org/10.1175/1520-0469(1987)044<3640:SFOAMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and J. Coover, 1990: Momentum and eddy kinetic energy transports by a multiple microburst-producing storm. J. Geophys. Res., 95, 76257636, https://doi.org/10.1029/JD095iD06p07625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Line, W. E., T. J. Schmit, D. T. Lindsey, and S. J. Goodman, 2016: Use of geostationary super rapid scan satellite imagery by the storm prediction center. Wea. Forecasting, 31, 483494, https://doi.org/10.1175/WAF-D-15-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livingston, J. M., and E. P. Krider, 1978: Electric fields produced by Florida thunderstorms. J. Geophys. Res., 83, 385401, https://doi.org/10.1029/JC083iC01p00385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, C., and R. E. Orville, 1996: TOGA COARE: Oceanic lightning. Mon. Wea. Rev., 124, 20772082, https://doi.org/10.1175/1520-0493(1996)124<2077:TCOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. J. Zipser, and M. A. LeMone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51, 31833193, https://doi.org/10.1175/1520-0469(1994)051<3183:VVIOCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mach, D. M., R. J. Blakeslee, M. G. Bateman, and J. C. Bailey, 2010: Comparisons of total currents based on storm location, polarity, and flash rates derived from high-altitude aircraft overflights. J. Geophys. Res., 115, D03201, https://doi.org/10.1029/2009JD012240.

    • Search Google Scholar
    • Export Citation
  • Mahoney, W. P., III, and A. R. Rodi, 1987: Aircraft measurements on microburst development from hydrometeor evaporation. J. Atmos. Sci., 44, 30373051, https://doi.org/10.1175/1520-0469(1987)044<3037:AMOMDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, W. P., III, and K. L. Elmore, 1991: The evolution and fine-scale structure of a microburst-producing cell. Mon. Wea. Rev., 119, 176192, https://doi.org/10.1175/1520-0493(1991)119<0176:TEAFSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCann, D. W., 1979: On overshooting-collapsing thunderstorm tops. Preprints 11th Conf. on Severe Local Storms, Kansas City, MO, Amer. Meteor. Soc., 363–367.

  • McCann, D. W., 1994: WINDEX—A new index for forecasting microburst potential. Wea. Forecasting, 9, 532541, https://doi.org/10.1175/1520-0434(1994)009<0532:WNIFFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, J., J. W. Wilson, and T. T. Fujita, 1982: The joint airport weather studies project. Bull. Amer. Meteor. Soc., 63, 1522, https://doi.org/10.1175/1520-0477(1982)063<0015:TJAWSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., C. P. Jewett, J. M. Apke, and L. D. Carey, 2016: Analysis of cumulus cloud updrafts as observed with 1-min resolution super rapid scan GOES imager. Mon. Wea. Rev., 144, 811830, https://doi.org/10.1175/MWR-D-14-00399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metzger, E., and W. A. Nuss, 2013: The relationship between total cloud lightning behavior and radar-derived thunderstorm structure. Wea. Forecasting, 28, 237253, https://doi.org/10.1175/WAF-D-11-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA NDBC, 2009: Handbook of automated data quality control checks and procedures. NDBC Tech. Doc. 09-02, 78 pp., https://www.ndbc.noaa.gov/NDBCHandbookofAutomatedDataQualityControl2009.pdf.

  • NOAA OPC, 2020: NOAA OPC Flyer. NOAA, 2 pp., https://ocean.weather.gov/OPC_Flyer.pdf.

  • Peterson, M., W. Deierling, C. Liu, D. Mach, and C. Kalb, 2017: The properties of optical lightning flashes and the cloud they illuminate. J. Geophys. Res. Atmos., 122, 423442, https://doi.org/10.1002/2016JD025312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proctor, F. H., 1989: Numerical simulations of an isolated microburst. Part II: Sensitivity experiments. J. Atmos. Sci., 46, 21432165, https://doi.org/10.1175/1520-0469(1989)046<2143:NSOAIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, K. L., 2015: Progress and developments of downburst prediction applications of GOES. Wea. Forecasting, 30, 11821200, https://doi.org/10.1175/WAF-D-14-00106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, K. L., and G. P. Ellrod, 2004a: Recent improvements to the GOES microburst products. Wea. Forecasting, 19, 582594, https://doi.org/10.1175/1520-0434(2004)019<0582:RITTGM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, K. L., and G. P. Ellrod, 2004b: WMSI—A new index for forecasting wet microburst severity. Electron. J. Oper. Meteor., 5 (3), http://nwafiles.nwas.org/ej/pdf/2004-EJ3.pdf.

    • Search Google Scholar
    • Export Citation
  • Púčik, T., P. Groenemeijer, D. Rýva, and M. Kolář , 2015: Proximity soundings of severe and nonsevere thunderstorm in central Europe. Mon. Wea. Rev., 143, 48054821, https://doi.org/10.1175/MWR-D-15-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeder, W. P., 2017: A new lightning climatology for Cape Canaveral Air Force Station and NASA Kennedy Space Center. 18th Conf. on Aviation, Range, and Aerospace Meteorology, Seattle, WA, Amer. Meteor. Soc., 1299, https://ams.confex.com/ams/97Annual/webprogram/Paper306110.html.

  • Rudlosky, S. D., and H. E. Fuelberg, 2013: Documenting storm severity in the mid-Atlantic region using lightning and radar information. Mon. Wea. Rev., 141, 31863202, https://doi.org/10.1175/MWR-D-12-00287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., S. J. Goodman, K. S. Virts, and E. C. Bruning, 2019: Initial Geostationary Lightning Mapper Observations. Geophys. Res. Lett., 46, 10971104, https://doi.org/10.1029/2018GL081052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Said, R. K., M. B. Cohen, and U. S. Inan, 2013: Highly intense lightning over the oceans: Estimated peak currents from global GLD360 observations. J. Geophys. Res. Atmos., 118, 69056915, https://doi.org/10.1002/jgrd.50508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandmӕl, T. N., C. R. Homeyer, K. M. Bedka, J. M. Apke, J. R. Mecikalski, and K. Khlopenkov, 2019: Evaluating the ability of remote sensing observations to identify significantly severe and potentially tornadic storms. J. Appl. Meteor. Climatol., 58, 25692590, https://doi.org/10.1175/JAMC-D-18-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., and et al. , 2013: Geostationary Operational Environmental Satellite (GOES)-14 super rapid scan operations to prepare for GOES-R. J. Appl. Remote Sens., 7, 073462, https://doi.org/10.1117/1.JRS.7.073462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., and et al. , 2015: Rapid refresh information of significant events: Preparing users for the next generation of geostationary operational satellites. Bull. Amer. Meteor. Soc., 4, 561576, https://doi.org/10.1175/BAMS-D-13-00210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., S. S. Lindstrom, J. J. Gerth, and M. M. Gunshor, 2018: Applications of the 16 spectral bands on the Advanced Baseline Imager (ABI). J. Oper. Meteor., 6, 3346, https://doi.org/10.15191/nwajom.2018.0604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2009: Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J. Appl. Meteor. Climatol., 48, 25432563, https://doi.org/10.1175/2009JAMC2237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2011: Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Wea. Forecasting, 26, 744755, https://doi.org/10.1175/WAF-D-10-05026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., L. D. Carey, E. V. Schultz, and R. J. Blakeslee, 2015: Insight into the kinematic and microphysical processes that control lightning jumps. Wea. Forecasting, 30, 15911621, https://doi.org/10.1175/WAF-D-14-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., L. D. Carey, E. V. Schultz, and R. J. Blakeslee, 2017: Kinematic and microphysical significance of lightning jumps versus nonjump increases in total flash rate. Wea. Forecasting, 32, 275288, https://doi.org/10.1175/WAF-D-15-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shackford, C. R., 1960: Radar indications of a precipitation-lightning relationship in New England thunderstorms. J. Meteor., 17, 1519, https://doi.org/10.1175/1520-0469(1960)017<0015:RIOAPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., W. D. Rust, B. F. Smull, and T. C. Marshall, 1998a: Electrical structure in thunderstorm convective regions 1. Mesoscale convective systems. J. Geophys. Res., 103, 14 05914 078, https://doi.org/10.1029/97JD03546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., W. D. Rust, and T. C. Marshall, 1998b: Electrical structure in thunderstorm convective regions 3. Synthesis. J. Geophys. Res., 103, 14 09714 108, https://doi.org/10.1029/97JD03545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suckstorff, G. A., 1938: Kaltlufterzeugung dürch Niederschlag (Cold air generation by precipitation). Meteor. Z., 55, 287292.

  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548, https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, W. L., 1983: Lightning location and progression using VHF space-time mapping technique. Proceedings in Atmospheric Electricity, L. H. Ruhnke and J. Latham, Eds., A. Deepak Publishing, 381–384.

  • Tuttle, J. D., V. N. Bringi, H. D. Orville, and F. J. Kopp, 1989: Multiparameter radar study of a microburst: Comparison with model results. J. Atmos. Sci., 46, 601620, https://doi.org/10.1175/1520-0469(1989)046<0601:MRSOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1985: Forecasting dry microburst activity over the High Plains. Mon. Wea. Rev., 113, 11311143, https://doi.org/10.1175/1520-0493(1985)113<1131:FDMAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and V. N. Bringi, 1988: Dual-polarization observations of microburst associated with intense convection: The 20 July storm during the MIST project. Mon. Wea. Rev., 116, 15211539, https://doi.org/10.1175/1520-0493(1988)116<1521:DPOOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., C. J. Kessinger, and D. E. Kingsmill, 1994: Kinematic, thermodynamic, and visual structure of low-reflectivity microbursts. Mon. Wea. Rev., 122, 7292, https://doi.org/10.1175/1520-0493(1994)122<0072:KTAVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 1981: Thunderstorm electrification: precipitation versus convection. Ph.D. dissertation, Massachusetts Institute of Technology, 266 pp., http://dspace.mit.edu/handle/1721.1/58124.

  • Williams, E. R., 1989: The tripole structure of thunderstorms. J. Geophys. Res., 94, 13 15113 167, https://doi.org/10.1029/JD094iD11p13151.

  • Williams, E. R., M. E. Weber, and R. E. Orville, 1989: The relationship between lightning type and convective state of thunderclouds. J. Geophys. Res., 94, 13 21313 220, https://doi.org/10.1029/JD094iD11p13213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and et al. , 1999: The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res., 51, 245265, https://doi.org/10.1016/S0169-8095(99)00011-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. M. Wakimoto, 2001: The discovery of the downburst: T. T. Fujita’s contribution. Bull. Amer. Meteor. Soc., 82, 4962, https://doi.org/10.1175/1520-0477(2001)082<0049:TDOTDT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., R. D. Roberts, C. Kessinger, and J. McCarthy, 1984: Microburst wind structure and evaluation of Doppler radar for airport wind shear detection. J. Climate Appl. Meteor., 23, 898915, https://doi.org/10.1175/1520-0450(1984)023<0898:MWSAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., J. A. Moore, G. B. Foote, B. Martner, A. R. Rodi, T. Uttal, and J. M. Wilczak, 1988: Convection Initiation and Downburst Experiment (CINDE). Bull. Amer. Meteor. Soc., 69, 13281348, https://doi.org/10.1175/1520-0477(1988)069<1328:CIADE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfson, M. M., 1990: Understanding and predicting microburst. Proc. 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 340–351.

  • Zheng, D., J. Zhang, Q. Meng, L. Chen, and J. Dan, 2016: Climatological comparison of small- and large-current cloud-to-ground lightning flashes over southern China. J. Climate, 29, 28312848, https://doi.org/10.1175/JCLI-D-15-0386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and M. A. LeMone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sci., 37, 24582469, https://doi.org/10.1175/1520-0469(1980)037<2458:CVVEIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 17511759, https://doi.org/10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 282 282 26
Full Text Views 62 62 3
PDF Downloads 78 78 5

Signatures of Oceanic Wind Events in Geostationary Cloud Top Temperature and Lightning Data

View More View Less
  • 1 Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama
  • | 2 Universities Space Research Association, Huntsville, Alabama
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A total of 13 ocean-based wind events from 2018, detected by buoys and Coastal-Marine Automated Network (C-MAN) stations, were analyzed using 1-min mesoscale sector Advanced Baseline Imager (ABI) cloud top brightness temperature (CTTB) data, as well as 1-min Geostationary Lightning Mapper (GLM) lightning data. The ABI and GLM instruments are located on the Geostationary Operational Environmental Satellite-16 (GOES-16) satellite. An oceanic wind event was defined as a buoy or C-MAN station-recorded peak wind gust of at least 14 m s−1, associated with a convective storm. The wind gust was required to exceed the wind speed by at least 4 m s−1 at the time of the event, but not exceed the corresponding wind speed by at least 4 m s−1 for more than 30 min. This study hypothesized that prior to a wind event, there should be unique signatures in ABI CTTB and GLM lightning datasets. The presumption was that the minimum CTTB and maximum flash rate should occur near the same time and prior to the event. The minimum CTTB occurred an average of 10.5 min and a median of 7 min prior to events, with a range from 29 min prior to 1 min after the event. Changes in CTTB were often subtle. A maximum flash rate occurred within 5 min of the minimum CTTB for 11 of the 12 events with lightning and did not exceed 11 flashes per minute for 9 of the 12 events with lightning. Operational weather forecasters might use CTTB and lightning trends to help identify storms capable of producing significant oceanic wind events.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kelsey Thompson, kelsey.thompson@nsstc.uah.edu

Abstract

A total of 13 ocean-based wind events from 2018, detected by buoys and Coastal-Marine Automated Network (C-MAN) stations, were analyzed using 1-min mesoscale sector Advanced Baseline Imager (ABI) cloud top brightness temperature (CTTB) data, as well as 1-min Geostationary Lightning Mapper (GLM) lightning data. The ABI and GLM instruments are located on the Geostationary Operational Environmental Satellite-16 (GOES-16) satellite. An oceanic wind event was defined as a buoy or C-MAN station-recorded peak wind gust of at least 14 m s−1, associated with a convective storm. The wind gust was required to exceed the wind speed by at least 4 m s−1 at the time of the event, but not exceed the corresponding wind speed by at least 4 m s−1 for more than 30 min. This study hypothesized that prior to a wind event, there should be unique signatures in ABI CTTB and GLM lightning datasets. The presumption was that the minimum CTTB and maximum flash rate should occur near the same time and prior to the event. The minimum CTTB occurred an average of 10.5 min and a median of 7 min prior to events, with a range from 29 min prior to 1 min after the event. Changes in CTTB were often subtle. A maximum flash rate occurred within 5 min of the minimum CTTB for 11 of the 12 events with lightning and did not exceed 11 flashes per minute for 9 of the 12 events with lightning. Operational weather forecasters might use CTTB and lightning trends to help identify storms capable of producing significant oceanic wind events.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kelsey Thompson, kelsey.thompson@nsstc.uah.edu
Save