• Aberson, S. D., A. Aksoy, K. J. Sellwood, T. Vukicevic, and Z. Zhang, 2015: Assimilation of high-resolution tropical cyclone observations with an ensemble Kalman filter using HEDAS: Evaluation of 2008–11 HWRF forecasts. Mon. Wea. Rev., 143, 511523, https://doi.org/10.1175/MWR-D-14-00138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aksoy, A., S. Lorsolo, T. Vukicevic, K. J. Sellwood, S. D. Aberson, and F. Zhang, 2012: The HWRF Hurricane Ensemble Data Assimilation System (HEDAS) for high-resolution data: The impact of airborne Doppler radar observations in an OSSE. Mon. Wea. Rev., 140, 18431862, https://doi.org/10.1175/MWR-D-11-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alaka, G. J., X. Zhang, S. G. Gopalakrishnan, Z. Zhang, F. D. Marks, and R. Atlas, 2019: Track uncertainty in high-resolution HWRF ensemble forecasts of Hurricane Joaquin. Wea. Forecasting, 34, 18891908, https://doi.org/10.1175/WAF-D-19-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D. M., and et al. , 2012: The Weather Research and Forecasting Model’s Community Variational/Ensemble DA System: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843, https://doi.org/10.1175/BAMS-D-11-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., and et al. , 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bull. Amer. Meteor. Soc., 88, 357374, https://doi.org/10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., 1985: The diurnal cycle of the marine stratocumulus layer: A higher-order model study. J. Atmos. Sci., 42, 28262843, https://doi.org/10.1175/1520-0469(1985)042<2826:TDCOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., 2019: 2018 hurricane season. National Hurricane Center Forecast Verification Rep., 73 pp., https://www.nhc.noaa.gov/verification/pdfs/Verification_2018.pdf.

  • Donelan, M. A., 2018: On the decrease of the oceanic drag coefficient in high winds. J. Geophys. Res. Oceans, 123, 14851501, https://doi.org/10.1002/2017JC013394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and et al. , 2012: Real time tropical cyclone prediction using COAMPS-TC. Advances in Geosciences, C.-C. Wu and J. Gan, Eds., Vol. 28, World Scientific Publishing Company, 15–28.

    • Crossref
    • Export Citation
  • Doyle, J. D., and et al. , 2014: Tropical cyclone prediction using COAMPS-TC. Oceanography, 27, 104115, https://doi.org/10.5670/oceanog.2014.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and et al. , 2020: Recent progress and challenges in tropical cyclone intensity prediction using COAMPS-TC. Tropical Meteorology and Tropical Cyclones Symp., Boston, MA, Amer. Meteor. Soc., 1.1, https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/363334.

  • Emanuel, K. A., and F. Zhang, 2017: The role of inner-core moisture in tropical cyclone predictability and practical forecast skill. J. Atmos. Sci., 74, 23152324, https://doi.org/10.1175/JAS-D-17-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C., E. Bradley, J. Hare, A. Grachev, and J. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K.-N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, https://doi.org/10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimit, E. P., and C. F. Mass, 2007: Measuring the ensemble spread–error relationship with a probabilistic approach: Stochastic ensemble results. Mon. Wea. Rev., 135, 203221, https://doi.org/10.1175/MWR3262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Y., W. T. Thompson, S. Wang, and C.-S. Liou, 2007: A numerical study of the effect of dissipative heating on tropical cyclone intensity. Wea. Forecasting, 22, 950966, https://doi.org/10.1175/WAF1028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Crossref
    • Export Citation
  • Komaromi, W. A., and S. J. Majumdar, 2014: Ensemble-based error and predictability metrics associated with tropical cyclogenesis. Part I: Basinwide perspective. Mon. Wea. Rev., 142, 28792898, https://doi.org/10.1175/MWR-D-13-00370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., and S. J. Majumdar, 2015: Ensemble-based error and predictability metrics associated with tropical cyclogenesis. Part II: Wave-relative framework. Mon. Wea. Rev., 143, 16651686, https://doi.org/10.1175/MWR-D-14-00286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leighton, H., S. Gopalakrishnan, J. A. Zhang, R. F. Rogers, Z. Zhang, and V. Tallapragada, 2018: Azimuthal distribution of deep convection, environmental factors, and tropical cyclone rapid intensification: A perspective from HWRF ensemble forecasts of Hurricane Edouard (2014). J. Atmos. Sci., 75, 275295, https://doi.org/10.1175/JAS-D-17-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, https://doi.org/10.1007/BF00117978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X., X. Wang, Y. Li, M. Tong, and X. Ma, 2017a: GSI-based ensemble-variational hybrid data assimilation for HWRF for hurricane initialization and prediction: Impact of various error covariances for airborne radar observation assimilation. Quart. J. Roy. Meteor. Soc., 143, 223239, https://doi.org/10.1002/qj.2914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X., X. Wang, M. Tong, and V. Tallapragada, 2017b: GSI-based, continuously cycled, dual-resolution hybrid ensemble–variational data assimilation system for HWRF: System description and experiments with Edouard (2014). Mon. Wea. Rev., 145, 48774898, https://doi.org/10.1175/MWR-D-17-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masters, J., 2020: The most reliable hurricane models, according to their 2019 performance. Yale Climate Connections, accessed 3 September 2020, https://yaleclimateconnections.org/2020/08/the-most-reliable-hurricane-models-according-to-their-2019-performance/.

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulent closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moskaitis, J. R., P. A. Reinecke, W. A. Komaromi, and J. D. Doyle, 2017: 2016 Real-time COAMPS-TC ensemble. 2017 HFIP Annual Review Meeting, Monterey, CA, Naval Research Laboratory, http://www.hfip.org/events/annual_meeting_jan_2017/presentations/Day1/1120AM-Moskaitis-COAMPS-TC-Ensemble.pdf.

  • National Hurricane Center, 2020: Definition of the NHC Track Forecast Cone. Accessed 29 September 2020, https://www.nhc.noaa.gov/aboutcone.shtml.

  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z., S. Zhang, M. Tong, and V. Tallapragada, 2016: Influence of the self-consistent regional ensemble background error covariance on hurricane inner-core data assimilation with the GSI-based hybrid system for HWRF. J. Atmos. Sci., 73, 49114925, https://doi.org/10.1175/JAS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure of organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206, https://doi.org/10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and G. L. Thomsen, 2014: Sensitivity of tropical-cyclone models to the surface drag coefficient in different boundary-layer schemes. Quart. J. Roy. Meteor. Soc., 140, 792804, https://doi.org/10.1002/qj.2057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., R. Lukas, M. A. Donelan, B. K. Haus, and I. Ginis, 2017: Is the state of the air-sea interface a factor in rapid intensification and rapid decline of tropical cyclones? J. Geophys. Res. Oceans, 122, 10 17410 183, https://doi.org/10.1002/2017JC013435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parametrization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, M., and et al. , 2018: Impact of assimilating aircraft reconnaissance observations on tropical cyclone initialization and prediction using operational HWRF and GSI ensemble–variational hybrid data assimilation. Mon. Wea. Rev., 146, 41554177, https://doi.org/10.1175/MWR-D-17-0380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Performance of a mesoscale ensemble Kalman filter (EnKF) during the NOAA high-resolution hurricane test. Mon. Wea. Rev., 138, 43754392, https://doi.org/10.1175/2010MWR3361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2016: Evaluation of atmosphere and ocean initial condition uncertainty and stochastic exchange coefficients on ensemble tropical cyclone intensity forecasts. Mon. Wea. Rev., 144, 34873506, https://doi.org/10.1175/MWR-D-16-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. A. Davis, 2012: The influence of shallow convection on tropical cyclone track forecasts. Mon. Wea. Rev., 140, 21882197, https://doi.org/10.1175/MWR-D-11-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 24902502, https://doi.org/10.1175/MWR3187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., Q. Wang, and J. Doyle, 2002: Some improvement of Louis surface flux parameterization. Preprints, 15th Symp. on Boundary Layers and Turbulence, Wageningen, Netherlands, Amer. Meteor. Soc., 547–550.

  • Weng, Y., and F. Zhang, 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., 140, 841859, https://doi.org/10.1175/2011MWR3602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, Y., and F. Zhang, 2016: Advances in convection-permitting tropical cyclone analysis and prediction through EnKF assimilation of reconnaissance aircraft observations. J. Meteor. Soc. Japan, 94, 345358, https://doi.org/10.2151/jmsj.2016-018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter: Humberto (2007). Mon. Wea. Rev., 137, 21052125, https://doi.org/10.1175/2009MWR2645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., V. Tallapragada, C. Kieu, S. Trahan, and W. Wang, 2014: HWRF based ensemble prediction system using perturbations from GEFS and stochastic convective trigger function. Trop. Cyclone Res. Rev., 3, 145161, https://doi.org/10.6057/2014TCRR03.02.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 146 146 42
Full Text Views 36 36 11
PDF Downloads 56 56 21

The Naval Research Laboratory’s Coupled Ocean–Atmosphere Mesoscale Prediction System-Tropical Cyclone Ensemble (COAMPS-TC Ensemble)

View More View Less
  • 1 Naval Research Laboratory, Monterey, California
© Get Permissions
Restricted access

Abstract

The 11-member Coupled Ocean–Atmosphere Mesoscale Prediction System-Tropical Cyclones (COAMPS-TC) ensemble has been developed by the Naval Research Laboratory (NRL) to produce probabilistic forecasts of tropical cyclone (TC) track, intensity and structure. All members run with a storm-following inner grid at convection-permitting 4-km horizontal resolution. The COAMPS-TC ensemble is constructed via a combination of perturbations to initial and boundary conditions, the initial vortex, and model physics to account for a variety of different sources of uncertainty that affect track and intensity forecasts. Unlike global model ensembles, which do a reasonable job capturing track uncertainty but not intensity, mesoscale ensembles such as the COAMPS-TC ensemble are necessary to provide a realistic intensity forecast spectrum. The initial and boundary condition perturbations are responsible for generating the majority of track spread at all lead times, as well as the intensity spread from 36 to 120 h. The vortex and physics perturbations are necessary to produce meaningful spread in the intensity prediction from 0 to 36 h. In a large sample of forecasts from 2014 to 2017, the ensemble-mean track and intensity forecast is superior to the unperturbed control forecast at all lead times, demonstrating a clear advantage to running an ensemble versus a deterministic forecast. The spread–skill relationship of the ensemble is also examined, and is found to be very well calibrated for track, but is underdispersive for intensity. Using a mixture of lateral boundary conditions derived from different global models is found to improve upon the spread–skill score for intensity, but it is hypothesized that additional physics perturbations will be necessary to achieve realistic ensemble spread.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: William A. Komaromi, will.komaromi@nrlmry.navy.mil

Abstract

The 11-member Coupled Ocean–Atmosphere Mesoscale Prediction System-Tropical Cyclones (COAMPS-TC) ensemble has been developed by the Naval Research Laboratory (NRL) to produce probabilistic forecasts of tropical cyclone (TC) track, intensity and structure. All members run with a storm-following inner grid at convection-permitting 4-km horizontal resolution. The COAMPS-TC ensemble is constructed via a combination of perturbations to initial and boundary conditions, the initial vortex, and model physics to account for a variety of different sources of uncertainty that affect track and intensity forecasts. Unlike global model ensembles, which do a reasonable job capturing track uncertainty but not intensity, mesoscale ensembles such as the COAMPS-TC ensemble are necessary to provide a realistic intensity forecast spectrum. The initial and boundary condition perturbations are responsible for generating the majority of track spread at all lead times, as well as the intensity spread from 36 to 120 h. The vortex and physics perturbations are necessary to produce meaningful spread in the intensity prediction from 0 to 36 h. In a large sample of forecasts from 2014 to 2017, the ensemble-mean track and intensity forecast is superior to the unperturbed control forecast at all lead times, demonstrating a clear advantage to running an ensemble versus a deterministic forecast. The spread–skill relationship of the ensemble is also examined, and is found to be very well calibrated for track, but is underdispersive for intensity. Using a mixture of lateral boundary conditions derived from different global models is found to improve upon the spread–skill score for intensity, but it is hypothesized that additional physics perturbations will be necessary to achieve realistic ensemble spread.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: William A. Komaromi, will.komaromi@nrlmry.navy.mil
Save