• Bender, M. A., R. J. Ross, R. E. Tuleya, and Y. Kurihara, 1993: Improvements in tropical cyclone track and intensity forecasts using the GFDL initialization system. Mon. Wea. Rev., 121, 20462061, https://doi.org/10.1175/1520-0493(1993)121<2046:IITCTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 39653989, https://doi.org/10.1175/2007MWR2032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and W. K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 39413961, https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, B. R., and G. J. Hakim, 2013: Variability and predictability of a three-dimensional hurricane in statistical equilibrium. J. Atmos. Sci., 70, 18061820, https://doi.org/10.1175/JAS-D-12-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y. S., and M. K. Yau, 2003: Asymmetric structures in a simulated landfalling hurricane. J. Atmos. Sci., 60, 22942312, https://doi.org/10.1175/1520-0469(2003)060<2294:ASIASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, N. E., and H. C. Weber, 2000: The BMRC high-resolution tropical cyclone prediction system: TC-LAPS. Mon. Wea. Rev., 128, 12451265, https://doi.org/10.1175/1520-0493(2000)128<1245:TBHRTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., and L. F. Bosart, 2002: Numerical simulations of the genesis of Hurricane Diana (1984), Part II: Sensitivity of track and intensity prediction. Mon. Wea. Rev., 130, 11001124, https://doi.org/10.1175/1520-0493(2002)130<1100:NSOTGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 2010: Tropical cyclone intensity change predictability estimates using a statistical-dynamical model. 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., 9C.5, https://ams.confex.com/ams/29Hurricanes/techprogram/paper_167916.htm.

  • DeMaria, M., J. A. Knaff, and C. Sampson, 2007: Evaluation of long-term trends in tropical cyclone intensity forecasts. Meteor. Atmos. Phys., 97, 1928, https://doi.org/10.1007/s00703-006-0241-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, https://doi.org/10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2012: Real time tropical cyclone prediction using COAMPS-TC. Advances in Geosciences, C.-C. Wu and J. Gan, Eds., Vol. 28, World Scientific Publishing Company, 15–28.

    • Crossref
    • Export Citation
  • Doyle, J. D., and Coauthors, 2014: Tropical cyclone prediction using COAMPS-TC. Oceanography, 27, 104115, https://doi.org/10.5670/oceanog.2014.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2017: A view of tropical cyclones from above: The tropical cyclone intensity experiment. Bull. Amer. Meteor. Soc., 98, 21132134, https://doi.org/10.1175/BAMS-D-16-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, T. D., T. Ngo-Duc, M. T. Hoang, and C. Q. Kieu, 2013: A study of connection between tropical cyclone track and intensity errors in the WRF model. Meteor. Atmos. Phys., 122, 5564, https://doi.org/10.1007/s00703-013-0278-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and F. Zhang, 2016: On the predictability and error sources of tropical cyclone intensity forecasts. J. Atmos. Sci., 73, 37393747, https://doi.org/10.1175/JAS-D-16-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, https://doi.org/10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer, 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329343, https://doi.org/10.1175/BAMS-D-12-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • George, J. E., and W. M. Gray, 1976: Tropical cyclone motion and surrounding parameter relationships. J. Appl. Meteor., 15, 12521264, https://doi.org/10.1175/1520-0450(1976)015<1252:TCMASP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2013: The variability and predictability of axisymmetric hurricanes in statistical equilibrium. J. Atmos. Sci., 70, 9931005, https://doi.org/10.1175/JAS-D-12-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., B. Wu, L. Zou, and T. Zhou, 2017: Responses of the summertime subtropical anticyclones to global warming. J. Climate, 30, 64656479, https://doi.org/10.1175/JCLI-D-16-0529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315, https://doi.org/10.1175/2009MWR2679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmospheric Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, https://doi.org/10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 25192541, https://doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, H., M. S. Peng, Y. Jin, and J. D. Doyle, 2014: An evaluation of the impact of horizontal resolution on tropical cyclone predictions using COAMPS-TC. Wea. Forecasting, 29, 252270, https://doi.org/10.1175/WAF-D-13-00054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judt, F., S. S. Chen, and J. Berner, 2016: Predictability of tropical cyclone intensity: Scale-dependent forecast error growth in high-resolution stochastic kinetic energy backscatter ensembles. Quart. J. Roy. Meteor. Soc., 142, 4357, https://doi.org/10.1002/qj.2626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C., 2015: Hurricane maximum potential intensity equilibrium. Quart. J. Roy. Meteor. Soc., 141, 24712480, https://doi.org/10.1002/qj.2556.

  • Kieu, C., and Z. Moon, 2016: Hurricane intensity predictability. Bull. Amer. Meteor. Soc., 97, 18471857, https://doi.org/10.1175/BAMS-D-15-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C., and Q. Wang, 2017: Stability of tropical cyclone equilibrium. J. Atmos. Sci., 74, 35913608, https://doi.org/10.1175/JAS-D-17-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C., and D.-L. Zhang, 2018: The control of environmental stratification on the hurricane maximum potential intensity. Geophys. Res. Lett., 45, 62726280, https://doi.org/10.1029/2018GL078070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C., V. Tallapragada, and W. Hogsett, 2014: Vertical structure of tropical cyclones at onset of the rapid intensification in the HWRF model. Geophys. Res. Lett., 41, 32983306, https://doi.org/10.1002/2014GL059584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C., K. Keshavamurthya, V. Tallapragada, S. Gopalakrishnan, and S. Trahan, 2018: On the growth of intensity forecast errors in the operational Hurricane Weather Research and Forecasting (HWRF) model. Quart. J. Roy. Meteor. Soc., 144, 18031819, https://doi.org/10.1002/qj.3344.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 21812199, https://doi.org/10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, H. J., S. H. Won, A. S. Suh, and H. S. Chung, 2002: GFDL-type typhoon initialization in MM5. Mon. Wea. Rev., 130, 29662974, https://doi.org/10.1175/1520-0493(2002)130<2966:GTTIIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., A. Hagen, W. Bredemeyer, C. Carrasco, D. A. Glenn, A. Santiago, D. Strahan-Sakoskie, and M. Dickinson, 2014: A reanalysis of the 1931–43 Atlantic hurricane database. J. Climate, 27, 60936118, https://doi.org/10.1175/JCLI-D-13-00503.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., D. L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 30733093, https://doi.org/10.1175/1520-0493(1997)125<3073:AMNSOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E.N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandal, M., U. C. Mohanty, P. Sinha, and M. M. Ali, 2007: Impact of sea surface temperature in modulating movement and intensity of tropical cyclones. Nat. Hazards, 41, 413427, https://doi.org/10.1007/s11069-006-9051-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osuri, K. K., U. C. Mohanty, A. Routray, M. A. Kulkarni, and M. Mohapatra, 2011: Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean. Nat. Hazards, 63, 13371359, https://doi.org/10.1007/s11069-011-9862-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, H.-L., and W.-S. Wu, 1995: Implementing a mass flux convective parameterization package for the NMC medium-range forecast model. NMC Office Note 409, 40 pp. [Available from NCEP/EMC, 5200 Auth Road, Camp Springs MD 20746.]

  • Pattnaik, S., and T. N. Krishnamurti, 2007: Impact of cloud microphysical processes on hurricane intensity, Part I: Control run. Meteor. Atmos. Phys., 97, 117126, https://doi.org/10.1007/s00703-006-0247-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, K., R. Rotunno, and G. Bryan, 2018: Evaluation of a time-dependent model for the intensification of tropical cyclones. J. Atmos. Sci., 75, 21252138, https://doi.org/10.1175/JAS-D-17-0382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206, https://doi.org/10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, W., R. E. Tuleya, and I. Ginis, 2000: A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming. J. Climate, 13, 109121, https://doi.org/10.1175/1520-0442(2000)013<0109:ASSOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., C. Kieu, Y. Kwon, S. Trahan, Q. Liu, Z. Zhang, and I. Kwon, 2014: Evaluation of storm structure from the operational HWRF during 2012 implementation. Mon. Wea. Rev., 142, 43084325, https://doi.org/10.1175/MWR-D-13-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., and Coauthors, 2015: Forecasting tropical cyclones in the western North Pacific basin using the NCEP operational HWRF: Real-time implementation in 2012. Wea. Forecasting, 30, 13551373, https://doi.org/10.1175/WAF-D-14-00138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, M., and Coauthors, 2018: Impact of assimilating aircraft reconnaissance observations on tropical cyclone initialization and prediction using operational HWRF and GSI ensemble–variational hybrid data assimilation. Mon. Wea. Rev., 146, 41554177, https://doi.org/10.1175/MWR-D-17-0380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. Snyder, 2012: Uncertainty of tropical cyclone best-track information. Wea. Forecasting, 27, 715729, https://doi.org/10.1175/WAF-D-11-00085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., Q. Wang, and J. D. Doyle, 2002: Some improvement to Louis surface flux parameterization. 15th Conf. on Boundary Layer and Turbulence, Wageningen, Netherlands, Amer. Meteor. Soc., 13.3a, https://ams.confex.com/ams/BLT/techprogram/paper_44519.htm.

  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, https://doi.org/10.1175/2008JAS2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and M. Ying, 2012: Seasonal forecasts of tropical cyclone activity over the Western North Pacific: A review. Trop. Cyclone Res. Rev., 1, 307324, https://doi.org/10.6057/2012TCRR03.07.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 62 62 60
Full Text Views 18 18 17
PDF Downloads 25 25 24

Track Dependence of Tropical Cyclone Intensity Forecast Errors in the COAMPS-TC Model

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana
  • 2 Marine Meteorology Division, U.S. Naval Research Laboratory, Monterey, California
© Get Permissions
Restricted access

Abstract

This study examines the dependence of tropical cyclone (TC) intensity forecast errors on track forecast errors in the Coupled Ocean–Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC) model. Using real-time forecasts and retrospective experiments during 2015–18, verification of TC intensity errors conditioned on different 5-day track error thresholds shows that reducing the 5-day track errors by 50%–70% can help reduce the absolute intensity errors by 18%–20% in the 2018 version of the COAMPS-TC model. Such impacts of track errors on the TC intensity errors are most persistent at 4–5-day lead times in all three major ocean basins, indicating a significant control of global models on the forecast skill of the COAMPS-TC model. It is of interest to find, however, that lowering the 5-day track errors below 80 n mi (1 n mi = 1.852 km) does not reduce TC absolute intensity errors further. Instead, the 4–5-day intensity errors appear to be saturated at around 10–12 kt (1 kt ≈ 0.51 m s−1) for cases with small track errors, thus suggesting the existence of some inherent intensity errors in regional models. Additional idealized simulations under a perfect model scenario reveal that the COAMPS-TC model possesses an intrinsic intensity variation at the TC mature stage in the range of 4–5 kt, regardless of the large-scale environment. Such intrinsic intensity variability in the COAMPS-TC model highlights the importance of potential chaotic TC dynamics, rather than model deficiencies, in determining TC intensity errors at 4–5-day lead times. These results suggest a fundamental limit in the improvement of TC intensity forecasts by numerical models that one should consider in future model development and evaluation.

Significance Statement

This study examines the dependence of tropical cyclone (TC) intensity forecast errors in the COAMPS-TC model on the track forecast errors. Results show that reducing track errors by 50%–70% can help improve intensity forecast by 18%–20% in the COAMPS-TC model, which is most realized at 4–5-day lead times. However, additionally reducing track errors does not improve TC intensity forecast further. Instead, the 4–5-day intensity errors for TC cases with small track errors appear to be saturated at around 10–12 kt. These results highlight the dependence of the intensity forecast accuracy in the COAMPS-TC model on track forecasts, thus providing evidence of inherent intensity variability in the COAMPS-TC model beyond global model guidance.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chanh Kieu, ckieu@indiana.edu

Abstract

This study examines the dependence of tropical cyclone (TC) intensity forecast errors on track forecast errors in the Coupled Ocean–Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC) model. Using real-time forecasts and retrospective experiments during 2015–18, verification of TC intensity errors conditioned on different 5-day track error thresholds shows that reducing the 5-day track errors by 50%–70% can help reduce the absolute intensity errors by 18%–20% in the 2018 version of the COAMPS-TC model. Such impacts of track errors on the TC intensity errors are most persistent at 4–5-day lead times in all three major ocean basins, indicating a significant control of global models on the forecast skill of the COAMPS-TC model. It is of interest to find, however, that lowering the 5-day track errors below 80 n mi (1 n mi = 1.852 km) does not reduce TC absolute intensity errors further. Instead, the 4–5-day intensity errors appear to be saturated at around 10–12 kt (1 kt ≈ 0.51 m s−1) for cases with small track errors, thus suggesting the existence of some inherent intensity errors in regional models. Additional idealized simulations under a perfect model scenario reveal that the COAMPS-TC model possesses an intrinsic intensity variation at the TC mature stage in the range of 4–5 kt, regardless of the large-scale environment. Such intrinsic intensity variability in the COAMPS-TC model highlights the importance of potential chaotic TC dynamics, rather than model deficiencies, in determining TC intensity errors at 4–5-day lead times. These results suggest a fundamental limit in the improvement of TC intensity forecasts by numerical models that one should consider in future model development and evaluation.

Significance Statement

This study examines the dependence of tropical cyclone (TC) intensity forecast errors in the COAMPS-TC model on the track forecast errors. Results show that reducing track errors by 50%–70% can help improve intensity forecast by 18%–20% in the COAMPS-TC model, which is most realized at 4–5-day lead times. However, additionally reducing track errors does not improve TC intensity forecast further. Instead, the 4–5-day intensity errors for TC cases with small track errors appear to be saturated at around 10–12 kt. These results highlight the dependence of the intensity forecast accuracy in the COAMPS-TC model on track forecasts, thus providing evidence of inherent intensity variability in the COAMPS-TC model beyond global model guidance.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chanh Kieu, ckieu@indiana.edu
Save