• Accadia, C., S. Mariani, M. Casaioli, A. Lavagnini, and A. Speranza, 2003: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Wea. Forecasting, 18, 918932, https://doi.org/10.1175/1520-0434(2003)018<0918:SOPFSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ancell, B. C., 2012: Examination of analysis and forecast errors of high-resolution assimilation, bias removal, and digital filter initialization with an ensemble Kalman filter. Mon. Wea. Rev., 140, 39924004, https://doi.org/10.1175/MWR-D-11-00319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642, https://doi.org/10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2012: Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon. Wea. Rev., 140, 23592371, https://doi.org/10.1175/MWR-D-11-00013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and N. Collins, 2007: Scalable implementations of ensemble filter algorithms for data assimilation. J. Atmos. Oceanic Technol., 24, 14521463, https://doi.org/10.1175/JTECH2049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, https://doi.org/10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballish, B. A., and V. Krishna Kumar, 2008: Systematic differences in aircraft and radiosonde temperatures. Bull. Amer. Meteor. Soc., 89, 16891708, https://doi.org/10.1175/2008BAMS2332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D. M., 2005: Southern high-latitude ensemble data assimilation in the Antarctic mesoscale prediction system. Mon. Wea. Rev., 133, 34313449, https://doi.org/10.1175/MWR3042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D. M., and et al. , 2012: The Weather Research and Forecasting Model’s community variational/ensemble data assimilation system: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843, https://doi.org/10.1175/BAMS-D-11-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ben Bouallegue, Z., T. Haiden, N. J. Weber, T. M. Hamill, and D. S. Richardson, 2020: Accounting for representativeness in the verification of ensemble precipitation forecasts. Mon. Wea. Rev., 148, 20492062, https://doi.org/10.1175/MWR-D-19-0323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and et al. , 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cafaro, C., T. H. A. Frame, J. Methven, N. Roberts, and J. Bröcker, 2019: The added value of convection-permitting ensemble forecasts of sea breeze compared to a Bayesian forecast driven by the global ensemble. Quart. J. Roy. Meteor. Soc., 145, 17801798, https://doi.org/10.1002/qj.3531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caron, J.-F., 2013: Mismatching perturbations at the lateral boundaries in limited-area ensemble forecasting: A case study. Mon. Wea. Rev., 141, 356374, https://doi.org/10.1175/MWR-D-12-00051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., J. Berner, and C. Snyder, 2016: Diagnosing model errors from time-averaged tendencies in the Weather Research and Forecasting (WRF) Model. Mon. Wea. Rev., 144, 759779, https://doi.org/10.1175/MWR-D-15-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, https://doi.org/10.1175/2009WAF2222222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and et al. , 2011: Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble. Mon. Wea. Rev., 139, 14101418, https://doi.org/10.1175/2010MWR3624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and et al. , 2012: An overview of the 2010 Hazardous Weather Testbed experimental forecast program spring experiment. Bull. Amer. Meteor. Soc., 93, 5574, https://doi.org/10.1175/BAMS-D-11-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and et al. , 2018: The Community Leveraged Unified Ensemble (CLUE) in the 2016 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Bull. Amer. Meteor. Soc., 99, 14331448, https://doi.org/10.1175/BAMS-D-16-0309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Computational and Information Systems Laboratory, 2017: Cheyenne: HPE/SGI ICE XA System (NCAR Community Computing). National Center for Atmospheric Research, accessed 13 October 2020, https://doi.org/10.5065/D6RX99HX.

    • Crossref
    • Export Citation
  • COSMO, 2020: MeteoSwiss operational applications within COSMO. Accessed 24 April 2020, http://www.cosmo-model.org/content/tasks/operational/meteoSwiss/default.htm.

  • Dahlgren, P., and N. Gustafsson, 2012: Assimilating host model information into a limited area model. Tellus, 64A, 15836, https://doi.org/10.3402/tellusa.v64i0.15836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degelia, S. K., X. Wang, D. J. Stensrud, and A. Johnson, 2018: Understanding the impact of radar and in situ observations on the prediction of a nocturnal convection initiation event on 25 June 2013 using an ensemble-based multiscale data assimilation system. Mon. Wea. Rev., 146, 18371859, https://doi.org/10.1175/MWR-D-17-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., J. P. Hacker, Y. Zhou, X. Deng, and R. B. Stull, 2006: Probabilistic aspects of meteorological and ozone regional ensemble forecasts. J. Geophys. Res., 111, D24307, https://doi.org/10.1029/2005JD006917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denis, B., J. Coté, and R. Laprise, 2002: Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the discrete cosine transform (DCT). Mon. Wea. Rev., 130, 18121829, https://doi.org/10.1175/1520-0493(2002)130<1812:SDOTDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Developmental Testbed Center, 2016: Gridpoint statistical interpolation advanced user’s guide version 3.5.0.0. Developmental Testbed Center, 119 pp., https://dtcenter.org/com-GSI/users/docs/users_guide/AdvancedGSIUserGuide_v3.5.0.0.pdf.

  • Dey, S. R., G. Leoncini, N. M. Roberts, R. S. Plant, and S. Migliorini, 2014: A spatial view of ensemble spread in convection permitting ensembles. Mon. Wea. Rev., 142, 40914107, https://doi.org/10.1175/MWR-D-14-00172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26, 911927, https://doi.org/10.1175/2008JTECHA1156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and et al. , 2016: Development of a High-Resolution Rapid Refresh Ensemble (HRRRE) for severe weather forecasting. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 8B.2, https://ams.confex.com/ams/28SLS/webprogram/Paper301555.html.

  • Duc, L., K. Saito, and H. Seko, 2013: Spatial–temporal fractions verification for high-resolution ensemble forecasts. Tellus, 65A, 18171, https://doi.org/10.3402/tellusa.v65i0.18171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, J. D., X. Wang, Y. Wang, and J. Carley, 2019: Comparing the assimilation of radar reflectivity using the direct GSI based ensemble-variational (EnVar) and indirect cloud analysis methods in convection-allowing forecasts over the continental United States. Mon. Wea. Rev., 147, 16551678, https://doi.org/10.1175/MWR-D-18-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2008: Fuzzy verification of high resolution gridded forecasts: A review and proposed framework. Meteor. Appl., 15, 5164, https://doi.org/10.1002/met.25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2009: Neighborhood verification: A strategy for rewarding close forecasts. Wea. Forecasting, 24, 14981510, https://doi.org/10.1175/2009WAF2222251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C., D. F. Van Dyke, and T. Lericos, 2014: How do forecasters utilize output from a convection-permitting ensemble forecast system? Case study of a high-impact precipitation event. Wea. Forecasting, 29, 466486, https://doi.org/10.1175/WAF-D-13-00064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., and V. Meunier, 2020: Why are radar data so difficult to assimilate skillfully? Mon. Wea. Rev., 148, 28192836, https://doi.org/10.1175/MWR-D-19-0374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., J. Sun, and Y. Zhang, 2020: A dynamic blending scheme to mitigate large-scale bias in regional models. J. Adv. Model. Earth Syst., 12, e2019MS001754, https://doi.org/10.1029/2019MS001754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., and M. Xue, 2008: An efficient dual-resolution approach for ensemble data assimilation and tests with assimilated Doppler radar data. Mon. Wea. Rev., 136, 945963, https://doi.org/10.1175/2007MWR2120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasperoni, N. A., X. Wang, and Y. Wang, 2020: A comparison of methods to sample model errors for convection-allowing ensemble forecasts in the setting of multiscale initial conditions produced by the GSI-based EnVar assimilation system. Mon. Wea. Rev., 148, 11771203, https://doi.org/10.1175/MWR-D-19-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebhardt, C., S. E. Theis, M. Paulat, and Z. Ben Bouallègue, 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res., 100, 168177, https://doi.org/10.1016/j.atmosres.2010.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gemmill, W., B. Katz, and X. Li, 2007: Daily real-time, global sea surface temperature—High-resolution analysis: RTG_SST_HR. NOAA/NWS/NCEP/EMC/MMAB, Science Application International Corporation, and Joint Center for Satellite Data Assimilation Tech. Note 260, 39 pp., http://polar.ncep.noaa.gov/mmab/papers/tn260/MMAB260.pdf.

  • Gowan, T. M., W. J. Steenburgh, and C. S. Schwartz, 2018: Validation of mountain precipitation forecasts from the convection-permitting NCAR ensemble and operational forecast systems over the western United States. Wea. Forecasting, 33, 739765, https://doi.org/10.1175/WAF-D-17-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guidard, V., and C. Fischer, 2008: Introducing the coupling information in a limited-area variational assimilation. Quart. J. Roy. Meteor. Soc., 134, 723735, https://doi.org/10.1002/qj.215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafsson, N., and et al. , 2018: Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres. Quart. J. Roy. Meteor. Soc., 144, 12181256, https://doi.org/10.1002/qj.3179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagelin, S., J. Son, R. Swinbank, A. McCabe, N. Roberts, and W. Tennant, 2017: The Met Office convective-scale ensemble, MOGREPS-UK. Quart. J. Roy. Meteor. Soc., 143, 28462861, https://doi.org/10.1002/qj.3135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550560, https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnisch, F., and C. Keil, 2015: Initial conditions for convective-scale ensemble forecasting provided by ensemble data assimilation. Mon. Wea. Rev., 143, 15831600, https://doi.org/10.1175/MWR-D-14-00209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and C. Schär, 2007: Predictability and error growth dynamics in cloud-resolving models. J. Atmos. Sci., 64, 44674478, https://doi.org/10.1175/2007JAS2143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 44894532, https://doi.org/10.1175/MWR-D-15-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133, 604620, https://doi.org/10.1175/MWR-2864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., X. Deng, H. L. Mitchell, S.-J. Baek, and N. Gagnon, 2014: Higher resolution in an operational ensemble Kalman filter. Mon. Wea. Rev., 142, 11431162, https://doi.org/10.1175/MWR-D-13-00138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsiao, L.-F., D.-S. Chen, Y.-H. Kuo, Y.-R. Guo, T.-C. Yeh, J.-S. Hong, C.-T. Fong, and C.-S. Lee, 2012: Application of WRF 3DVAR to operational typhoon prediction in Taiwan: Impact of outer loop and partial cycling approaches. Wea. Forecasting, 27, 12491263, https://doi.org/10.1175/WAF-D-11-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsiao, L.-F., and et al. , 2015: Blending of global and regional analyses with a spatial filter: Application to typhoon prediction over the western North Pacific Ocean. Wea. Forecasting, 30, 754770, https://doi.org/10.1175/WAF-D-14-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iyer, E. R., A. J. Clark, M. Xue, and F. Kong, 2016: A comparison of 36–60-h precipitation forecasts from convection-allowing and convection-parameterizing ensembles. Wea. Forecasting, 31, 647661, https://doi.org/10.1175/WAF-D-15-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, E. P., and S. G. Benjamin, 2017: Observation system experiments with the hourly updating Rapid Refresh model using GSI hybrid ensemble–variational data assimilation. Mon. Wea. Rev., 145, 28972918, https://doi.org/10.1175/MWR-D-16-0398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp., http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.

  • Jirak, I. L., A. J. Clark, B. Roberts, B. T. Gallo, and S. J. Weiss, 2018: Exploring the optimal configuration of the High Resolution Ensemble Forecast System. 25th Conf. on Numerical Weather Prediction, Denver, CO, Amer. Meteor. Soc., 14B.6, https://ams.confex.com/ams/29WAF25NWP/webprogram/Paper345640.html.

  • Johnson, A., and X. Wang, 2016: A study of multiscale initial condition perturbation methods for convection-permitting ensemble forecasts. Mon. Wea. Rev., 144, 25792604, https://doi.org/10.1175/MWR-D-16-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., and X. Wang, 2017: Design and implementation of a GSI-based convection-allowing ensemble data assimilation and forecast system for the PECAN field experiment. Part I: Optimal configurations for nocturnal convection prediction using retrospective cases. Wea. Forecasting, 32, 289315, https://doi.org/10.1175/WAF-D-16-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, J. Carley, L. Wicker, and C. Karstens, 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. Mon. Wea. Rev., 143, 30873108, https://doi.org/10.1175/MWR-D-14-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, Y. Wang, A. Reinhart, A. J. Clark, and I. L. Jirak, 2020: Neighborhood- and object-based probabilistic verification of the OU MAP ensemble forecasts during 2017 and 2018 Hazardous Weather Testbeds. Wea. Forecasting, 35, 169191, https://doi.org/10.1175/WAF-D-19-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and D. J. Stensrud, 2012: Assimilating AIRS temperature and mixing ratio profiles using an ensemble Kalman filter approach for convective-scale forecasts. Wea. Forecasting, 27, 541564, https://doi.org/10.1175/WAF-D-11-00090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikondo, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast System. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297327, https://doi.org/10.1175/WAF-D-15-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., X. Wang, P. S. Skinner, A. Johnson, and Y. Wang, 2018: Assimilation of GOES-13 imager clear-sky water vapor (6.5 μm) radiances into a Warn-on-Forecast system. Mon. Wea. Rev., 146, 10771107, https://doi.org/10.1175/MWR-D-17-0280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and et al. , 2020: Assimilation of GOES-16 radiances and retrievals into the warn-on-forecast system. Mon. Wea. Rev., 148, 18291859, https://doi.org/10.1175/MWR-D-19-0379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judt, F., 2018: Insights into atmospheric predictability through global convection-permitting model simulations. J. Atmos. Sci., 75, 14771497, https://doi.org/10.1175/JAS-D-17-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and et al. , 2010: Assessing advances in the assimilation of radar data and other mesoscale observations within a collaborative forecasting–research environment. Wea. Forecasting, 25, 15101521, https://doi.org/10.1175/2010WAF2222405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keresturi, E., Y. Wang, F. Meier, F. Weidle, C. Wittmann, and A. Atencia, 2019: Improving initial condition perturbations in a convection-permitting ensemble prediction system. Quart. J. Roy. Meteor. Soc., 145, 9931012, https://doi.org/10.1002/qj.3473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klasa, C., M. Arpagaus, A. Walser, and H. Wernli, 2018: An evaluation of the convection-permitting ensemble COSMO-E for three contrasting precipitation events in Switzerland. Quart. J. Roy. Meteor. Soc., 144, 744764, https://doi.org/10.1002/qj.3245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and K. Ide, 2015a: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-hybrid results. Mon. Wea. Rev., 143, 433451, https://doi.org/10.1175/MWR-D-13-00351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and K. Ide, 2015b: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Wea. Rev., 143, 452470, https://doi.org/10.1175/MWR-D-13-00350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP global data assimilation system. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladwig, T. T., and et al. , 2018: Development of the High-Resolution Rapid Refresh Ensemble (HRRRE) toward an operational convective-allowing ensemble data assimilation and forecast system. Sixth Symp. on the Weather, Water, and Climate Enterprise, Austin, TX, Amer. Meteor. Soc., TJ1.2, https://ams.confex.com/ams/98Annual/webprogram/Paper334565.html.

  • Li, Z., J. C. McWilliams, K. Ide, and J. Farrara, 2015: A multiscale variational data assimilation scheme: Formulation and illustration. Mon. Wea. Rev., 143, 38043822, https://doi.org/10.1175/MWR-D-14-00384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., S. S. Weygandt, S. G. Benjamin, and M. Hu, 2017: Satellite radiance data assimilation within the hourly updated Rapid Refresh. Wea. Forecasting, 32, 12731287, https://doi.org/10.1175/WAF-D-16-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, http://ams.confex.com/ams/pdfpapers/83847.pdf.

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307, https://doi.org/10.3402/tellusa.v21i3.10086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, I. B., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291303.

  • Mason, S. J., and N. E. Graham, 2002: Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Quart. J. Roy. Meteor. Soc., 128, 21452166, https://doi.org/10.1256/003590002320603584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, V., N. Kalthoff, and L. Gantner, 2017: Predictability of convective precipitation for West Africa: Verification of convection-permitting and global ensemble simulations. Meteor. Z., 26, 93110, https://doi.org/10.1127/metz/2016/0728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melhauser, C., and F. Zhang, 2012: Practical and intrinsic predictability of severe and convective weather at the mesoscales. J. Atmos. Sci., 69, 33503371, https://doi.org/10.1175/JAS-D-11-0315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittermaier, M., and N. Roberts, 2010: Intercomparison of spatial forecast methods: Identifying skillful spatial scales using the fractions skill score. Wea. Forecasting, 25, 343354, https://doi.org/10.1175/2009WAF2222260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittermaier, M., N. Roberts, and S. A. Thompson, 2013: A long-term assessment of precipitation forecast skill using the fractions skill score. Meteor. Appl., 20, 176186, https://doi.org/10.1002/met.296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, B. R., O. P. Prat, D.-J. Seo, and E. Habib, 2016: Assessment and implications of NCEP Stage IV quantitative precipitation estimates for product intercomparisons. Wea. Forecasting, 31, 371394, https://doi.org/10.1175/WAF-D-14-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peralta, C., Z. B. Bouallègue, S. E. Theis, C. Gebhardt, and M. Buchhold, 2012: Accounting for initial condition uncertainties in COSMO-DE-EPS. J. Geophys. Res., 117, D07108, https://doi.org/10.1029/2011JD016581.

    • Search Google Scholar
    • Export Citation
  • Porson, A. N., S. Hagelin, D. F. A. Boyd, N. M. Roberts, R. North, S. Webster, and J. C.-F. Lo, 2019: Extreme rainfall sensitivity in convective-scale ensemble modelling over Singapore. Quart. J. Roy. Meteor. Soc., 145, 30043022, https://doi.org/10.1002/qj.3601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, J. G., and et al. , 2017: The Weather Research and Forecasting Model: Overview, system efforts, and future directions. Bull. Amer. Meteor. Soc., 98, 17171737, https://doi.org/10.1175/BAMS-D-15-00308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainwater, S., and B. Hunt, 2013: Mixed resolution ensemble data assimilation. Mon. Wea. Rev., 141, 30073021, https://doi.org/10.1175/MWR-D-12-00234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, W. H., 1988: High-order low-pass implicit tangent filters for use in finite area calculations. Mon. Wea. Rev., 116, 21322141, https://doi.org/10.1175/1520-0493(1988)116<2132:HOLPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, W. H., and A. Garder, 1991: A review of recursive and implicit filters. Mon. Wea. Rev., 119, 477495, https://doi.org/10.1175/1520-0493(1991)119<0477:ARORAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raynaud, L., and F. Bouttier, 2016: Comparison of initial perturbation methods for ensemble prediction at convective scale. Quart. J. Roy. Meteor. Soc., 142, 854866, https://doi.org/10.1002/qj.2686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raynaud, L., and F. Bouttier, 2017: The impact of horizontal resolution and ensemble size for convective-scale probabilistic forecasts. Quart. J. Roy. Meteor. Soc., 143, 30373047, https://doi.org/10.1002/qj.3159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricard, D., C. Lac, S. Riette, R. Legrand, and A. Mary, 2013: Kinetic energy spectra characteristics of two convection-permitting limited-area models AROME and Meso-NH. Quart. J. Roy. Meteor. Soc., 139, 13271341, https://doi.org/10.1002/qj.2025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, E., and et al. , 2017: Mesoscale modeling development at the National Centers for Environmental Prediction: Version 4 of the NAM forecast system and scenarios for the evolution to a high-resolution ensemble forecast system. 28th Conf. on Weather and Forecasting/24th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 3B.4, https://ams.confex.com/ams/97Annual/webprogram/Paper311212.html.

  • Romine, G. S., C. S. Schwartz, C. Snyder, J. L. Anderson, and M. L. Weisman, 2013: Model bias in a continuously cycled assimilation system and its influence on convection-permitting forecasts. Mon. Wea. Rev., 141, 12631284, https://doi.org/10.1175/MWR-D-12-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, J. Berner, K. R. Fossell, C. Snyder, J. L. Anderson, and M. L. Weisman, 2014: Representing forecast error in a convection-permitting ensemble system. Mon. Wea. Rev., 142, 45194541, https://doi.org/10.1175/MWR-D-14-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schellander-Gorgas, T., Y. Wang, F. Meier, F. Weidle, C. Wittmann, and A. Kann, 2017: On the forecast skills of a convection-permitting ensemble. Geosci. Model Dev., 10, 3556, https://doi.org/10.5194/gmd-10-35-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schraff, C., H. Reich, A. Rhodin, A. Schomburg, K. Stephan, A. Periáñez, and R. Potthast, 2016: Kilometre-scale ensemble data assimilation for the COSMO model (KENDA). Quart. J. Roy. Meteor. Soc., 142, 14531472, https://doi.org/10.1002/qj.2748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and A. J. Clark, 2014: Evaluation of ensemble configurations for the analysis and prediction of heavy-rain-producing mesoscale convective systems. Mon. Wea. Rev., 142, 41084138, https://doi.org/10.1175/MWR-D-13-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., 2016: Improving large-domain convection-allowing forecasts with high-resolution analyses and ensemble data assimilation. Mon. Wea. Rev., 144, 17771803, https://doi.org/10.1175/MWR-D-15-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., 2019: Medium-range convection-allowing ensemble forecasts with a variable-resolution global model. Mon. Wea. Rev., 147, 29973023, https://doi.org/10.1175/MWR-D-18-0452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Z. Liu, 2014: Convection-permitting forecasts initialized with continuously cycling limited-area 3DVAR, ensemble Kalman filter, and “hybrid” variational-ensemble data assimilation systems. Mon. Wea. Rev., 142, 716738, https://doi.org/10.1175/MWR-D-13-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., 145, 33973418, https://doi.org/10.1175/MWR-D-16-0400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and et al. , 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280, https://doi.org/10.1175/2009WAF2222267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, K. R. Smith, and M. L. Weisman, 2014: Characterizing and optimizing precipitation forecasts from a convection-permitting ensemble initialized by a mesoscale ensemble Kalman filter. Wea. Forecasting, 29, 12951318, https://doi.org/10.1175/WAF-D-13-00145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, M. L. Weisman, R. A. Sobash, K. R. Fossell, K. W. Manning, and S. B. Trier, 2015a: A real-time convection-allowing ensemble prediction system initialized by mesoscale ensemble Kalman filter analyses. Wea. Forecasting, 30, 11581181, https://doi.org/10.1175/WAF-D-15-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, R. A. Sobash, K. R. Fossell, and M. L. Weisman, 2015b: NCAR’s experimental real-time convection-allowing ensemble prediction system. Wea. Forecasting, 30, 16451654, https://doi.org/10.1175/WAF-D-15-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, R. A. Sobash, K. R. Fossell, and M. L. Weisman, 2019: NCAR’s real-time convection-allowing ensemble project. Bull. Amer. Meteor. Soc., 100, 321343, https://doi.org/10.1175/BAMS-D-17-0297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., M. Wong, G. S. Romine, R. A. Sobash, and K. R. Fossell, 2020: Initial conditions for convection-allowing ensembles over the conterminous United States. Mon. Wea. Rev., 148, 26452669, https://doi.org/10.1175/MWR-D-19-0401.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, H., and et al. , 2016: Bridging research to operations transitions: Status and plans of community GSI. Bull. Amer. Meteor. Soc., 97, 14271440, https://doi.org/10.1175/BAMS-D-13-00245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skinner, P. S., and et al. , 2018: Object-based verification of a prototype warn-on-forecast system. Wea. Forecasting, 33, 12251250, https://doi.org/10.1175/WAF-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and et al. , 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and et al. , 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and et al. , 2013: Progress and challenges with warn-on-forecast. Atmos. Res., 123, 216, https://doi.org/10.1016/j.atmosres.2012.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tegen, I., P. Hollrig, M. Chin, I. Fung, D. Jacob, and J. Penner, 1997: Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res., 102, 23 89523 915, https://doi.org/10.1029/97JD01864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theis, S. E., A. Hense, and U. Damrath, 2005: Probabilistic precipitation forecasts from a deterministic model: A pragmatic approach. Meteor. Appl., 12, 257268, https://doi.org/10.1017/S1350482705001763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. A. Davis, 2012: The influence of shallow convection on tropical cyclone track forecasts. Mon. Wea. Rev., 140, 21882197, https://doi.org/10.1175/MWR-D-11-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 24902502, https://doi.org/10.1175/MWR3187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vendrasco, E. P., J. Sun, D. L. Herdies, and C. F. De Angelis, 2016: Constraining a 3DVAR radar data assimilation system with large-scale analysis to improve short-range precipitation forecasts. J. Appl. Meteor. Climatol., 55, 673690, https://doi.org/10.1175/JAMC-D-15-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., X.-Y. Huang, D. Xu, and J. Liu, 2014: A scale-dependent blending scheme for WRFDA: Impact on regional weather forecasting. Geosci. Model Dev., 7, 18191828, https://doi.org/10.5194/gmd-7-1819-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and T. Lei, 2014: GSI-based four-dimensional ensemble–variational (4DEnsVar) data assimilation: Formulation and single-resolution experiments with real data for the NCEP Global Forecast System. Mon. Wea. Rev., 142, 33033325, https://doi.org/10.1175/MWR-D-13-00303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and et al. , 2011: The central European limited-area-ensemble forecasting system: ALADIN-LAEF. Quart. J. Roy. Meteor. Soc., 137, 483502, https://doi.org/10.1002/qj.751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., M. Bellus, J.-F. Geleyn, X. Ma, W. Tian, and F. Weidle, 2014: A new method for generating initial condition perturbations in a regional ensemble prediction system: Blending. Mon. Wea. Rev., 142, 20432059, https://doi.org/10.1175/MWR-D-12-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. T., R. A. Peterson, and R. E. Treadon, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78, 25992617, https://doi.org/10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast system. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, https://doi.org/10.1175/MWR-D-11-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Wolff, J. K., M. Harrold, T. Fowler, J. H. Gotway, L. Nance, and B. G. Brown, 2014: Beyond the basics: Evaluating model-based precipitation forecasts using traditional, spatial, and object-based methods. Wea. Forecasting, 29, 14511472, https://doi.org/10.1175/WAF-D-13-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, M., G. Romine, and C. Snyder, 2020: Model improvement via systematic investigation of physics tendencies. Mon. Wea. Rev., 148, 671688, https://doi.org/10.1175/MWR-D-19-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodhams, B. J., C. E. Birch, J. H. Marsham, C. L. Bain, N. M. Roberts, and D. F. Boyd, 2018: What is the added value of a convection-permitting model for forecasting extreme rainfall over tropical East Africa? Mon. Wea. Rev., 146, 27572780, https://doi.org/10.1175/MWR-D-17-0396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W.-S., D. F. Parrish, E. Rogers, and Y. Lin, 2017: Regional ensemble–variational data assimilation using global ensemble forecasts. Wea. Forecasting, 32, 8396, https://doi.org/10.1175/WAF-D-16-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and et al. , 2007: CAPS real-time storm-scale ensemble and high-resolution forecasts as part of the NOAA Hazardous Weather Testbed 2007 Spring Experiment. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Salt Lake City, UT, Amer. Meteor. Soc., 3B.1, http://ams.confex.com/ams/pdfpapers/124587.pdf.

  • Yang, X., 2005: Analysis blending using a spatial filter in grid-point model coupling. HIRLAM Newsletter, No. 48, Article 10, HIRLAM Programme, de Bilt, Netherlands, 49–55, http://www.hirlam.org/index.php/hirlam-documentation/doc_view/517-hirlam-newsletter-no-48-article10-yang.

  • Yussouf, N., D. C. Dowell, L. J. Wicker, K. Knopfmeier, and D. M. Wheatley, 2015: Storm-scale data assimilation and ensemble forecasts for the 27 April 2011 severe weather outbreak in Alabama. Mon. Wea. Rev., 143, 30443066, https://doi.org/10.1175/MWR-D-14-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., J. S. Kain, and A. J. Clark, 2016: Short-term probabilistic forecasts of the 31 May 2013 Oklahoma tornado and flash flood event using a continuous-update-cycle storm-scale ensemble system. Wea. Forecasting, 31, 957983, https://doi.org/10.1175/WAF-D-15-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, https://doi.org/10.1175/MWR-D-10-05091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 11731185, https://doi.org/10.1175/1520-0469(2003)060<1173:EOMCOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., M. Zhang, and J. Poterjoy, 2013: E3DVar: Coupling an ensemble Kalman filter with three-dimensional variational data assimilation in a limited-area weather prediction model and comparison to E4DVar. Mon. Wea. Rev., 141, 900917, https://doi.org/10.1175/MWR-D-12-00075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., J. Chen, X. Zhi, Y. Wang, and Y. Wang, 2015: Study on multi-scale blending initial condition perturbations for a regional ensemble prediction system. Adv. Atmos. Sci., 32, 11431155, https://doi.org/10.1007/s00376-015-4232-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., 2018: Application of a convection-permitting ensemble prediction system to quantitative precipitation forecasts over southern China: Preliminary results during SCMREX. Quart. J. Roy. Meteor. Soc., 144, 28422862, https://doi.org/10.1002/qj.3411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., Y. Zhu, D. Hou, Y. Luo, J. Peng, and D. Wobus, 2017: Performance of the new NCEP global ensemble forecast system in a parallel experiment. Wea. Forecasting, 32, 19892004, https://doi.org/10.1175/WAF-D-17-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 335 335 21
Full Text Views 123 123 9
PDF Downloads 142 142 10

Toward Unifying Short-Term and Next-Day Convection-Allowing Ensemble Forecast Systems with a Continuously Cycling 3-km Ensemble Kalman Filter over the Entire Conterminous United States

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
  • | 2 NOAA/Earth System Research Laboratory, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Using the Weather Research and Forecasting Model, 80-member ensemble Kalman filter (EnKF) analyses with 3-km horizontal grid spacing were produced over the entire conterminous United States (CONUS) for 4 weeks using 1-h continuous cycling. For comparison, similarly configured EnKF analyses with 15-km horizontal grid spacing were also produced. At 0000 UTC, 15- and 3-km EnKF analyses initialized 36-h, 3-km, 10-member ensemble forecasts that were verified with a focus on precipitation. Additionally, forecasts were initialized from operational Global Ensemble Forecast System (GEFS) initial conditions (ICs) and experimental “blended” ICs produced by combining large scales from GEFS ICs with small scales from EnKF analyses using a low-pass filter. The EnKFs had stable climates with generally small biases, and precipitation forecasts initialized from 3-km EnKF analyses were more skillful and reliable than those initialized from downscaled GEFS and 15-km EnKF ICs through 12–18 and 6–12 h, respectively. Conversely, after 18 h, GEFS-initialized precipitation forecasts were better than EnKF-initialized precipitation forecasts. Blended 3-km ICs reflected the respective strengths of both GEFS and high-resolution EnKF ICs and yielded the best performance considering all times: blended 3-km ICs led to short-term forecasts with similar or better skill and reliability than those initialized from unblended 3-km EnKF analyses and ~18–36-h forecasts possessing comparable quality as GEFS-initialized forecasts. This work likely represents the first time a convection-allowing EnKF has been continuously cycled over a region as large as the entire CONUS, and results suggest blending high-resolution EnKF analyses with low-resolution global fields can potentially unify short-term and next-day convection-allowing ensemble forecast systems under a common framework.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Craig Schwartz, schwartz@ucar.edu

Abstract

Using the Weather Research and Forecasting Model, 80-member ensemble Kalman filter (EnKF) analyses with 3-km horizontal grid spacing were produced over the entire conterminous United States (CONUS) for 4 weeks using 1-h continuous cycling. For comparison, similarly configured EnKF analyses with 15-km horizontal grid spacing were also produced. At 0000 UTC, 15- and 3-km EnKF analyses initialized 36-h, 3-km, 10-member ensemble forecasts that were verified with a focus on precipitation. Additionally, forecasts were initialized from operational Global Ensemble Forecast System (GEFS) initial conditions (ICs) and experimental “blended” ICs produced by combining large scales from GEFS ICs with small scales from EnKF analyses using a low-pass filter. The EnKFs had stable climates with generally small biases, and precipitation forecasts initialized from 3-km EnKF analyses were more skillful and reliable than those initialized from downscaled GEFS and 15-km EnKF ICs through 12–18 and 6–12 h, respectively. Conversely, after 18 h, GEFS-initialized precipitation forecasts were better than EnKF-initialized precipitation forecasts. Blended 3-km ICs reflected the respective strengths of both GEFS and high-resolution EnKF ICs and yielded the best performance considering all times: blended 3-km ICs led to short-term forecasts with similar or better skill and reliability than those initialized from unblended 3-km EnKF analyses and ~18–36-h forecasts possessing comparable quality as GEFS-initialized forecasts. This work likely represents the first time a convection-allowing EnKF has been continuously cycled over a region as large as the entire CONUS, and results suggest blending high-resolution EnKF analyses with low-resolution global fields can potentially unify short-term and next-day convection-allowing ensemble forecast systems under a common framework.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Craig Schwartz, schwartz@ucar.edu
Save