• Allen, J. T., and M. K. Tippett, 2015: The characteristics of United States hail reports: 1955–2014. Electron. J. Severe Storms Meteor., 10 (3), https://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/149.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015: An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment. J. Adv. Model. Earth Syst., 7, 226243, https://doi.org/10.1002/2014MS000397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., and Coauthors, 2017: An extreme value model for U.S. hail size. Mon. Wea. Rev., 145, 45014519, https://doi.org/10.1175/MWR-D-17-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amburn, S. A., and P. L. Wolf, 1997: VIL density as a hail indicator. Wea. Forecasting, 12, 473478, https://doi.org/10.1175/1520-0434(1997)012<0473:VDAAHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. J. Krmenec, and R. Schwantes, 2008: Vulnerability due to nocturnal tornadoes. Wea. Forecasting, 23, 795807, https://doi.org/10.1175/2008WAF2222132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, S. F., D. R. Deroche, J. M. Boustead, J. W. Leighton, B. L. Barjenbruch, and W. P. Gargan, 2011: A radar-based assessment of the detectability of giant hail. Electron. J. Severe Storms Meteor., 6 (7), http://www.ejssm.org/ojs/index.php/ejssm/article/view/87.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and Coauthors, 2017: High-resolution hail observations: Implications for NWS warning operations. Wea. Forecasting, 32, 11011119, https://doi.org/10.1175/WAF-D-16-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell, and M. P. Kay, 2003: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, https://doi.org/10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., S. R. Fleegel, T. Grafenauer, C. J. Schultz, and P. N. Schumacher, 2020: Observations of hail–wind ratios from convective storm reports across the continental United States. Wea. Forecasting, 35, 635656, https://doi.org/10.1175/WAF-D-19-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., and J. D. Tuttle, 2008: Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Climate, 21, 41324146, https://doi.org/10.1175/2008JCLI2275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheeks, S. M., S. Fueglistaler, and S. T. Garner, 2020: A satellite-based climatology of central and southeastern U.S. mesoscale convective systems. Mon. Wea. Rev., 148, 26072621, https://doi.org/10.1175/MWR-D-20-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, https://doi.org/10.1175/WAF-D-11-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, S. M., and J. G. LaDue, 2004: Nonmeteorological factors in warning verification. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P2.7, https://ams.confex.com/ams/11aram22sls/techprogram/paper_81766.htm.

  • Doswell, C. A., H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595, https://doi.org/10.1175/WAF866.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and P. J. Robinson, 1985: The diurnal variation of thunderstorm activity in the United States. J. Climate Appl. Meteor., 24, 10481058, https://doi.org/10.1175/1520-0450(1985)024<1048:TDVOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., 2006: Supercells of the Serranias del Burro (Mexico). 23rd Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., P6.2, https://www.spc.noaa.gov/publications/edwards/delburro.pdf.

  • Federer, B., and Coauthors, 1986: Main results of Grossversuch IV. J. Climate Appl. Meteor., 25, 917957, https://doi.org/10.1175/1520-0450(1986)025<0917:MROGI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., and W. S. Ashley, 2019: A radar-based climatology of mesoscale convective systems in the United States. J. Climate, 32, 15911606, https://doi.org/10.1175/JCLI-D-18-0559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hales, J. E., 1993: Biases in the severe thunderstorm database: Ramifications and solutions. Preprints, 13th Conf. on Weather Forecasting and Analysis, Vienna, VA, Amer. Meteor. Soc., 504–507.

  • Hitchens, N. M., and H. E. Brooks, 2014: Evaluation of the storm prediction center’s convective outlooks from day 3 through day 1. Wea. Forecasting, 29, 11341142, https://doi.org/10.1175/WAF-D-13-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613654, https://doi.org/10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jewell, R., and J. Brimelow, 2009: Evaluation of Alberta hail growth model using severe hail proximity soundings from the United States. Wea. Forecasting, 24, 15921609, https://doi.org/10.1175/2009WAF2222230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krocak, M. J., 2017: A sub-daily severe weather climatology and its implications for forecasting. M.S. thesis, School of Meteorology, University of Oklahoma, 82 pp.

  • Krocak, M. J., and H. E. Brooks, 2018: Climatological estimates of hourly tornado probability for the United States. Wea. Forecasting, 33, 5969, https://doi.org/10.1175/WAF-D-17-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krocak, M. J., and H. E. Brooks, 2020: An analysis of subdaily severe thunderstorm probabilities for the United States. Wea. Forecasting, 35, 107112, https://doi.org/10.1175/WAF-D-19-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., D. M. Rodgers, and K. W. Howard, 1982: Mesoscale convective complexes over the United States during 1981—Annual summary. Mon. Wea. Rev., 110, 15011514, https://doi.org/10.1175/1520-0493(1982)110<1501:MCCOTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mead, C., and R. Thompson, 2011: Environmental characteristics associated with nocturnal significant-tornado events in the Great Plains. Electron. J. Severe Storms Meteor., 6 (6), https://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/84.

    • Search Google Scholar
    • Export Citation
  • Melick, C. J., I. L. Jirak, J. Correia Jr., A. R. Dean, and S. J. Weiss, 2014: Exploration of the NSSL maximum expected size of hail (MESH) product for verifying experimental hail forecasts in the 2014 spring forecast experiment. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 76, https://ams.confex.com/ams/27SLS/webprogram/Paper254292.html.

  • Murillo, E. M., and C. R. Homeyer, 2019: Severe hail fall and hailstorm detection using remote sensing observations. J. Appl. Meteor. Climatol., 58, 947970, https://doi.org/10.1175/JAMC-D-18-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murillo, E. M., C. R. Homeyer, and J. T. Allen, 2020: A 22-year hail climatology using GridRad MESH observations. 20th Symp. on Meteorological Observation and Instrumentation, Boston, MA, Amer. Meteor. Soc., 11.2, https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/366946.

  • Ortega, K. L., 2018: Evaluating multi-radar, multi-sensor products for surface hail-fall diagnosis. Electron. J. Severe Storms Meteor., 13 (1), https://ejssm.org/ojs/index.php/ejssm/article/viewArticle/163.

    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., T. M. Smith, G. J. Stumpf, J. Hocker, and L. Lopez, 2005: A comparison of multi-sensor hail diagnosis techniques. 21st Int. Conf. on Interactive Information Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, San Diego, CA, Amer. Meteor. Soc., P1.11, https://ams.confex.com/ams/Annual2005/techprogram/paper_87640.htm.

  • Ortega, K. L., T. M. Smith, and G. J. Stumpf, 2006: Verification of multi-sensor, multi-radar hail diagnosis techniques. Symp. on the Challenges of Severe Convective Storms, Atlanta, GA, Amer. Meteor. Soc., P1.1, https://ams.confex.com/ams/Annual2006/techprogram/paper_104885.htm.

  • Ortega, K. L., T. M. Smith, K. L. Manross, K. A. Scharfenberg, A. W. A. G. Kolodziej, and J. J. Gourley, 2009: The Severe Hazards Analysis and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 15191530, https://doi.org/10.1175/2009BAMS2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Podlaha, A., S. Bowen, and M. Lörinc, 2020: Weather, Climate & Catastrophe Insight: 2019 Annual Report. Annual Rep. AON, 83 pp., http://thoughtleadership.aon.com/Documents/20200122-if-natcat2020.pdf.

  • Potvin, C. K., C. Broyles, P. S. Skinner, H. E. Brooks, and E. Rasmussen, 2019: A Bayesian hierarchical modeling framework for correcting reporting bias in the U.S. tornado database. Wea. Forecasting, 34, 1530, https://doi.org/10.1175/WAF-D-18-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reif, D. W., and H. B. Bluestein, 2017: A 20-year climatology of nocturnal convection initiation over the central and southern Great Plains during the warm season. Mon. Wea. Rev., 145, 16151639, https://doi.org/10.1175/MWR-D-16-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhodes, B., 2019: Skyfield v1.16. Brandon Rhodes, accessed 21 January 2020, https://github.com/skyfielders/python-skyfield.

  • Riley, G. T., M. G. Landin, and L. F. Bosart, 1987: The diurnal variability of precipitation across the central Rockies and adjacent Great Plains. Mon. Wea. Rev., 115, 11611172, https://doi.org/10.1175/1520-0493(1987)115<1161:TDVOPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601608, https://doi.org/10.1175/2008WAF2222159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothfusz, L. P., R. Schneider, D. Novak, K. Klockow-McClain, A. E. Gerard, C. Karstens, G. J. Stumpf, and T. M. Smith, 2018: FACETs: A proposed next-generation paradigm for high-impact weather forecasting. Bull. Amer. Meteor. Soc., 99, 20252043, https://doi.org/10.1175/BAMS-D-16-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stelten, S., and W. A. Gallus Jr., 2017: Pristine nocturnal convective initiation: A climatology and preliminary examination of predictability. Wea. Forecasting, 32, 16131635, https://doi.org/10.1175/WAF-D-16-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., T. M. Smith, and A. E. Gerard, 2002: The Multiple-Radar Severe Storm Analysis Program (MR-SSAP) for WDSS-II. 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 4.6, https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_46790.htm.

  • Waldvogel, A., B. Federer, W. Schmid, and J. F. Mezeix, 1978: The kinetic energy of hailfalls. Part II: Radar and hailpads. J. Appl. Meteor., 17, 16801693, https://doi.org/10.1175/1520-0450(1978)017<1680:TKEOHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendt, N. A., I. L. Jirak, and C. J. Melick, 2016: Verification of severe weather proxies from the NSSL-WRF for hail forecasting. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 110, https://ams.confex.com/ams/28SLS/webprogram/Paper300913.html.

  • Wilson, C. J., K. Ortega, and V. Lakshmanan, 2009: Evaluating multi-radar, multi-sensor hail diagnosis with high resolution hail reports. 25th Conf. on Interactive Information Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., P2.9, https://ams.confex.com/ams/pdfpapers/146206.pdf.

  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. W. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyatt, A., and A. Witt, 1997: The effect of population density on ground-truth verification of reports used to score a hail detection algorithm. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 368–369.

All Time Past Year Past 30 Days
Abstract Views 44 44 44
Full Text Views 22 22 22
PDF Downloads 26 26 26

An Hourly Climatology of Operational MRMS MESH-Diagnosed Severe and Significant Hail with Comparisons to Storm Data Hail Reports

View More View Less
  • 1 NOAA/National Weather Service/Storm Prediction Center, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

The Multi-Radar Multi-Sensor (MRMS) system generates an operational suite of derived products in the National Weather Service useful for real-time monitoring of severe convective weather. One such product generated by MRMS is the maximum estimated size of hail (MESH) that estimates hail size based on the radar reflectivity properties of a storm above the environmental 0°C level. The MRMS MESH product is commonly used across the National Weather Service (NWS), including the Storm Prediction Center (SPC), to diagnose the expected hail size in thunderstorms. Previous work has explored the relationship between the MRMS MESH product and severe hail (≥25.4 mm or 1 in.) reported at the ground. This work provides an hourly climatology of severe MRMS MESH across the contiguous United States from 2012 to 2019, including an analysis of how the MESH climatology differs from the severe hail reports climatology. Results suggest that the MESH can provide beneficial hail risk information in areas where population density is low. Evidence also shows that the MESH can provide potentially beneficial information about severe hail occurrence during the night in locations that are climatologically favored for upscale convective growth and elevated convection. These findings have important implications for the use of MESH as a verification dataset for SPC probabilistic hail forecasts as well as severe weather watch decisions in areas of higher hail risk but low population density.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WAF-D-20-0158.s1.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nathan A. Wendt, nathan.wendt@noaa.gov

Abstract

The Multi-Radar Multi-Sensor (MRMS) system generates an operational suite of derived products in the National Weather Service useful for real-time monitoring of severe convective weather. One such product generated by MRMS is the maximum estimated size of hail (MESH) that estimates hail size based on the radar reflectivity properties of a storm above the environmental 0°C level. The MRMS MESH product is commonly used across the National Weather Service (NWS), including the Storm Prediction Center (SPC), to diagnose the expected hail size in thunderstorms. Previous work has explored the relationship between the MRMS MESH product and severe hail (≥25.4 mm or 1 in.) reported at the ground. This work provides an hourly climatology of severe MRMS MESH across the contiguous United States from 2012 to 2019, including an analysis of how the MESH climatology differs from the severe hail reports climatology. Results suggest that the MESH can provide beneficial hail risk information in areas where population density is low. Evidence also shows that the MESH can provide potentially beneficial information about severe hail occurrence during the night in locations that are climatologically favored for upscale convective growth and elevated convection. These findings have important implications for the use of MESH as a verification dataset for SPC probabilistic hail forecasts as well as severe weather watch decisions in areas of higher hail risk but low population density.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WAF-D-20-0158.s1.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nathan A. Wendt, nathan.wendt@noaa.gov

Supplementary Materials

    • Supplemental Materials (ZIP 52.27 MB)
Save