• Badr, H. S., A. K. Dezfuli, B. F. Zaitchik, and C. D. Peters-Lidard, 2016: Regionalizing Africa: Patterns of precipitation variability in observations and global climate models. J. Climate, 29, 90279043, https://doi.org/10.1175/JCLI-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and M. K. Tippett, 2013: Predictions of Nino3.4 SST in CFSv1 and CFSv2: A diagnostic comparison. Climate Dyn., 41, 16151633, https://doi.org/10.1007/s00382-013-1845-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. Li, and D. G. Dewitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631651, https://doi.org/10.1175/BAMS-D-11-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2020: Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ., 1, 215231, https://doi.org/10.1038/s43017-020-0040-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and et al. , 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, G. M., J. P. Dallavalle, and H. R. Glahn, 1989: Statistical forecasts based on the National Meteorological Center’s numerical weather prediction system. Wea. Forecasting, 4, 401412, https://doi.org/10.1175/1520-0434(1989)004<0401:SFBOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., and et al. , 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 10131024, https://doi.org/10.1175/BAMS-84-8-1013.

  • Dalcher, A., and E. Kalnay, 1987: Error growth and predictability in operational ECMWF forecasts. Tellus, 39A, 474491, https://doi.org/10.1111/j.1600-0870.1987.tb00322.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danforth, C. M., and E. Kalnay, 2008: Impact of online empirical model correction on nonlinear error growth. Geophys. Res. Lett., 35, L24805, https://doi.org/10.1029/2008GL036239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., and A. Y. Hou, 1999: Empirical correction of a dynamical model. Part I: Fundamental issues. Mon. Wea. Rev., 127, 25332545, https://doi.org/10.1175/1520-0493(1999)127<2533:ECOADM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., M. Zhao, P. A. Dirmeyer, and B. P. Kirtman, 2008: Empirical correction of a coupled land–atmosphere model. Mon. Wea. Rev., 136, 40634076, https://doi.org/10.1175/2008MWR2344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, H., M. Newman, M. A. Alexander, and A. T. Wittenberg, 2018: Skillful climate forecasts of the tropical Indo-Pacific Ocean using model analogs. J. Climate, 31, 54375459, https://doi.org/10.1175/JCLI-D-17-0661.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, H., M. Newman, M. A. Alexander, and A. T. Wittenberg, 2019: Diagnosing secular variations in retrospective ENSO seasonal forecast skill using CMIP5 model analogs. Geophys. Res. Lett., 46, 17211730, https://doi.org/10.1029/2018GL080598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, H., M. Newman, M. A. Alexander, and A. T. Wittenberg, 2020: Relating CMIP5 model biases to seasonal forecast skill in the tropical Pacific. Geophys. Res. Lett., 47, e2019GL086765, https://doi.org/10.1029/2019GL086765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R., J. Li, F. Zheng, J. Feng, and D. Liu, 2016: Estimating the limit of decadal-scale climate predictability using observational data. Climate Dyn., 46, 15631580, https://doi.org/10.1007/s00382-015-2662-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, W., and C. Wei, 2013: The “spring predictability barrier” for ENSO predictions and its possible mechanism: Results from a fully coupled model. Int. J. Climatol., 33, 12801292, https://doi.org/10.1002/joc.3513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, G. L., S. P. Sun, J. H. Zhao, and Z. H. Zheng, 2013: Analysis of stable components for extended-range (10-30 days) weather forecast: A case study of continuous overcast-rainy process in early 2009 over the mid-lower reaches of the Yangtze River. Sci. China Earth Sci., 56, 15761587, https://doi.org/10.1007/s11430-012-4527-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, L., H. L. Ren, J. P. Li, and J. F. Chou, 2006: Analogue correction method of errors and its application to numerical weather prediction. Chin. Phys., 15, 882889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glahn, H., and D. A. Lowry, 1972: The use of Model Output Statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 12031211, https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229, https://doi.org/10.1175/MWR3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, Z., B. Zuo, S. Zhang, F. Huang, R. Ding, W. Duan, and J. Li, 2020: Model forecast error correction based on the local dynamical analog method: An example application to the ENSO forecast by an intermediate coupled model. Geophys. Res. Lett., 47, e2020GL088986, https://doi.org/10.1029/2020GL088986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and et al. , 2017: The art and science of climate model tuning. Bull. Amer. Meteor. Soc., 98, 589602, https://doi.org/10.1175/BAMS-D-15-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, J. Zhu, and Y. Guan, 2014: Prediction skill of North Pacific variability in NCEP Climate Forecast System version 2: Impact of ENSO and beyond. J. Climate, 27, 42634272, https://doi.org/10.1175/JCLI-D-13-00633.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., Y. Yuhong, W. Shaowu, and C. Jifen, 1993: An analogue-dynamical long-range numerical weather prediction system incorporating historical evolution. Quart. J. Roy. Meteor. Soc., 119, 547565, https://doi.org/10.1002/qj.49711951111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, E. K., and et al. , 2008: Current status of ENSO prediction skill in coupled ocean-atmosphere models. Climate Dyn., 31, 647664, https://doi.org/10.1007/s00382-008-0397-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H. Y., and J. Y. Yu, 2009: Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. Chen, L. Zhang, W. Wang, Y. Xue, C. Wen, L. Marx, and B. Huang, 2012: An analysis of the nonstationarity in the bias of sea surface temperature forecasts for the NCEP Climate Forecast System (CFS) version 2. Mon. Wea. Rev., 140, 30033016, https://doi.org/10.1175/MWR-D-11-00335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S. M., and B. P. Kirtman, 2017: Drivers of coupled model ENSO error dynamics and the spring predictability barrier. Climate Dyn., 48, 36313644, https://doi.org/10.1007/s00382-016-3290-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lguensat, R., P. Tandeo, P. Ailliot, M. Pulido, and R. Fablet, 2017: The analog data assimilation. Mon. Wea. Rev., 145, 40934107, https://doi.org/10.1175/MWR-D-16-0441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and R. Ding, 2011: Temporal-spatial distribution of atmospheric predictability limit by local dynamical analogs. Mon. Wea. Rev., 139, 32653283, https://doi.org/10.1175/MWR-D-10-05020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and R. Ding, 2013: Temporal-spatial distribution of the predictability limit of monthly sea surface temperature in the global oceans. Int. J. Climatol., 33, 19361947, https://doi.org/10.1002/joc.3562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and R. Ding, 2015: Weather forecasting: Seasonal and interannual weather prediction. Encyclopedia of Atmospheric Sciences, 2nd ed. F. Zhang and G. North, Eds., Elsevier, 303–312.

    • Crossref
    • Export Citation
  • Li, J., J. Feng, and R. Ding, 2018: Attractor radius and global attractor radius and their application to the quantification of predictability limits. Climate Dyn., 51, 23592374, https://doi.org/10.1007/s00382-017-4017-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and H. L. Ren, 2017: Improving ENSO prediction in CFSv2 with an analogue-based correction method. Int. J. Climatol., 37, 50355046, https://doi.org/10.1002/joc.5142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26, 636646, https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medvigy, D., R. L. Walko, M. J. Otte, and R. Avissar, 2010: The ocean–land–atmosphere model: Optimization and evaluation of simulated radiative fluxes and precipitation. Mon. Wea. Rev., 138, 19231939, https://doi.org/10.1175/2009MWR3131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1973: A new vector partition of the probability score. J. Appl. Meteor., 12, 595600, https://doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and P. D. Sardeshmukh, 2017: Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures? Geophys. Res. Lett., 44, 85208529, https://doi.org/10.1002/2017GL074088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, H., and J. Chou, 2006: Analogue correction method of errors by combining statistical and dynamical methods. Acta Meteor. Sin., 20, 367373.

    • Search Google Scholar
    • Export Citation
  • Ren, H., and J. Chou, 2007: Strategy and methodology of dynamical analogue prediction. Sci. China. Ser. D Earth Sci., 50, 15891599, https://doi.org/10.1007/s11430-007-0109-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, H., J. Chou, J. Huang, and P. Zhang, 2009: Theoretical basis and application of an analogue-dynamical model in the Lorenz system. Adv. Atmos. Sci., 26, 6777, https://doi.org/10.1007/s00376-009-0067-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., and et al. , 2011: ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Climate Dyn., 37, 455471, https://doi.org/10.1007/s00382-010-0947-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Dool, H. M., 1994: Searching for analogues, how long must we wait? Tellus, 46A, 314324, https://doi.org/10.3402/tellusa.v46i3.15481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., C. Deser, J.-Y. Yu, P. DiNezio, and A. Clement, 2017: El Niño and Southern Oscillation (ENSO): A review. Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment, D. P. Manzello, I. C. Enochs, and P. W. Glynn, Eds., Vol. 8, Springer, 85–106.

  • Wilks, D., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Xu, Z., and Z. L. Yang, 2012: An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. J. Climate, 25, 62716286, https://doi.org/10.1175/JCLI-D-12-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. Chen, A. Kumar, Z. Z. Hu, and W. Wang, 2013: Prediction skill and bias of tropical Pacific sea surface temperatures in the NCEP Climate Forecast System version 2. J. Climate, 26, 53585378, https://doi.org/10.1175/JCLI-D-12-00600.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S. W., J. S. Kug, and S. Il An, 2014: Recent progress on two types of El Niño: Observations, dynamics, and future changes. Asia-Pac. J. Atmos. Sci., 50, 6981, https://doi.org/10.1007/s13143-014-0028-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, F., X.-H. Fang, J. Zhu, J.-Y. Yu, and X.-C. Li, 2016: Modulation of Bjerknes feedback on the decadal variations in ENSO predictability. Geophys. Res. Lett., 43, 12 56012 568, https://doi.org/10.1002/2016GL071636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., A. Kumar, W. Wang, Z. Z. Hu, B. Huang, and M. A. Balmaseda, 2017: Importance of convective parameterization in ENSO predictions. Geophys. Res. Lett., 44, 63346342, https://doi.org/10.1002/2017GL073669.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 112 112 10
Full Text Views 41 41 1
PDF Downloads 44 44 1

Correction of Monthly SST Forecasts in CFSv2 Using the Local Dynamical Analog Method

View More View Less
  • 1 Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES)/Key Laboratory of Physical Oceanography/Institute for Advanced Ocean Studies/College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China
  • | 2 Laboratory for Ocean Dynamics and Climate, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Numerical seasonal forecasts in Earth science always contain forecast errors that cannot be eliminated by improving the ability of the numerical model. Therefore, correction of model forecast results is required. Analog correction is an effective way to reduce model forecast errors, but the key question is how to locate analogs. In this paper, we updated the local dynamical analog (LDA) algorithm to find analogs and depicted the process of model error correction as the LDA correction scheme. The LDA correction scheme was first applied to correct the operational seasonal forecasts of sea surface temperature (SST) over the period 1982–2018 from the state-of-the-art coupled climate model named NCEP Climate Forecast System, version 2. The results demonstrated that the LDA correction scheme improves forecast skill in many regions as measured by the correlation coefficient and root-mean-square error, especially over the extratropical eastern Pacific and tropical Pacific, where the model has high simulation ability. El Niño–Southern Oscillation (ENSO) as the focused physics process is also improved. The seasonal predictability barrier of ENSO is in remission, and the forecast skill of central Pacific ENSO also increases due to the LDA correction method. The intensity of the ENSO mature phases is improved. Meanwhile, the ensemble forecast results are corrected, which proves the positive influence from this LDA correction scheme on the probability forecast of cold and warm events. Overall, the LDA correction scheme, combining statistical and model dynamical information, is demonstrated to be readily integrable with other advanced operational models and has the capability to improve forecast results.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianping Li, ljp@ouc.edu.cn

Abstract

Numerical seasonal forecasts in Earth science always contain forecast errors that cannot be eliminated by improving the ability of the numerical model. Therefore, correction of model forecast results is required. Analog correction is an effective way to reduce model forecast errors, but the key question is how to locate analogs. In this paper, we updated the local dynamical analog (LDA) algorithm to find analogs and depicted the process of model error correction as the LDA correction scheme. The LDA correction scheme was first applied to correct the operational seasonal forecasts of sea surface temperature (SST) over the period 1982–2018 from the state-of-the-art coupled climate model named NCEP Climate Forecast System, version 2. The results demonstrated that the LDA correction scheme improves forecast skill in many regions as measured by the correlation coefficient and root-mean-square error, especially over the extratropical eastern Pacific and tropical Pacific, where the model has high simulation ability. El Niño–Southern Oscillation (ENSO) as the focused physics process is also improved. The seasonal predictability barrier of ENSO is in remission, and the forecast skill of central Pacific ENSO also increases due to the LDA correction method. The intensity of the ENSO mature phases is improved. Meanwhile, the ensemble forecast results are corrected, which proves the positive influence from this LDA correction scheme on the probability forecast of cold and warm events. Overall, the LDA correction scheme, combining statistical and model dynamical information, is demonstrated to be readily integrable with other advanced operational models and has the capability to improve forecast results.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianping Li, ljp@ouc.edu.cn
Save