Reforecasting Two Heavy-Precipitation Events with Three Convection-Permitting Ensembles

Valerio Capecchi LaMMA, Laboratorio di Meteorologia e Modellistica Ambientale per lo sviluppo sostenibile, Firenze, Italia

Search for other papers by Valerio Capecchi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3168-3310
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

We investigate the potential added value of running three limited-area ensemble systems (with the WRF, Meso-NH, and MOLOCH models and a grid spacing of approximately 2.5 km) for two heavy-precipitation events in Italy. Such high-resolution ensembles include an explicit treatment of convective processes and dynamically downscale the ECMWF global ensemble predictions, which have a grid spacing of approximately 18 km. The predictions are verified against rain gauge data, and their accuracy is evaluated over that of the driving coarser-resolution ensemble system. Furthermore, we compare the simulation speed (defined as the ratio of simulation length to wall-clock time) of the three limited-area models to estimate the computational effort for operational convection-permitting ensemble forecasting. We also study how the simulation wall-clock time scales with increasing numbers of computing elements (from 36 to 1152 cores). Objective verification methods generally show that convection-permitting forecasts outperform global forecasts for both events, although precipitation peaks remain largely underestimated for one of the two events. Comparing simulation speeds, the MOLOCH model is the fastest and the Meso-NH is the slowest one. The WRF Model attains efficient scalability, whereas it is limited for the Meso-NH and MOLOCH models when using more than 288 cores. We finally demonstrate how the model simulation speed has the largest impact on a joint evaluation with the model performance because the accuracy of the three limited-area ensembles, amplifying the forecasting capability of the global predictions, does not differ substantially.

Significance Statement

We reforecasted two heavy-precipitation events that struck Italy in autumn 2011 by using recent versions of three limited-area weather models, which use a more accurate description of convective processes than the driving global model. By reforecasting past events, the aim of this work is to assess the information content carried by current numerical forecasting systems in the event of similar high-impact events happening again. In view of the potential use for operational forecasting, this study evaluates how the time needed to deliver the forecasts decreases as the computer speed increases. It is shown that such a scaling capability depends not only on the computing elements but also on the geometry of the model domain.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Valerio Capecchi, capecchi@lamma.toscana.it

Abstract

We investigate the potential added value of running three limited-area ensemble systems (with the WRF, Meso-NH, and MOLOCH models and a grid spacing of approximately 2.5 km) for two heavy-precipitation events in Italy. Such high-resolution ensembles include an explicit treatment of convective processes and dynamically downscale the ECMWF global ensemble predictions, which have a grid spacing of approximately 18 km. The predictions are verified against rain gauge data, and their accuracy is evaluated over that of the driving coarser-resolution ensemble system. Furthermore, we compare the simulation speed (defined as the ratio of simulation length to wall-clock time) of the three limited-area models to estimate the computational effort for operational convection-permitting ensemble forecasting. We also study how the simulation wall-clock time scales with increasing numbers of computing elements (from 36 to 1152 cores). Objective verification methods generally show that convection-permitting forecasts outperform global forecasts for both events, although precipitation peaks remain largely underestimated for one of the two events. Comparing simulation speeds, the MOLOCH model is the fastest and the Meso-NH is the slowest one. The WRF Model attains efficient scalability, whereas it is limited for the Meso-NH and MOLOCH models when using more than 288 cores. We finally demonstrate how the model simulation speed has the largest impact on a joint evaluation with the model performance because the accuracy of the three limited-area ensembles, amplifying the forecasting capability of the global predictions, does not differ substantially.

Significance Statement

We reforecasted two heavy-precipitation events that struck Italy in autumn 2011 by using recent versions of three limited-area weather models, which use a more accurate description of convective processes than the driving global model. By reforecasting past events, the aim of this work is to assess the information content carried by current numerical forecasting systems in the event of similar high-impact events happening again. In view of the potential use for operational forecasting, this study evaluates how the time needed to deliver the forecasts decreases as the computer speed increases. It is shown that such a scaling capability depends not only on the computing elements but also on the geometry of the model domain.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Valerio Capecchi, capecchi@lamma.toscana.it
Save
  • Berner, J., K. Fossell, S.-Y. Ha, J. Hacker, and C. Snyder, 2015: Increasing the skill of probabilistic forecasts: Understanding performance improvements from model-error representations. Mon. Wea. Rev., 143, 12951320, https://doi.org/10.1175/MWR-D-14-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttier, F., and L. Raynaud, 2018: Clustering and selection of boundary conditions for limited-area ensemble prediction. Quart. J. Roy. Meteor. Soc., 144, 23812391, https://doi.org/10.1002/qj.3304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttier, F., B. Vié, O. Nuissier, and L. Raynaud, 2012: Impact of stochastic physics in a convection-permitting ensemble. Mon. Wea. Rev., 140, 37063721, https://doi.org/10.1175/MWR-D-12-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttier, F., L. Raynaud, O. Nuissier, and B. Ménétrier, 2016: Sensitivity of the AROME ensemble to initial and surface perturbations during HyMeX. Quart. J. Roy. Meteor. Soc., 142, 390403, https://doi.org/10.1002/qj.2622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Buizza, R., 2019: Introduction to the special issue on “25 years of ensemble forecasting.” Quart. J. Roy. Meteor. Soc., 145, 111, https://doi.org/10.1002/qj.3370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., and T. Palmer, 1995: The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci., 52, 14341456, https://doi.org/10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buzzi, A., S. Davolio, P. Malguzzi, O. Drofa, and D. Mastrangelo, 2014: Heavy rainfall episodes over Liguria in autumn 2011: Numerical forecasting experiments. Nat. Hazards Earth Syst. Sci., 14, 13251340, https://doi.org/10.5194/nhess-14-1325-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buzzi, A., E. Di Muzio, and P. Malguzzi, 2020: Barrier winds in the Italian region and effects of moist processes. Bull. Atmos. Sci. Technol., 1, 5990, https://doi.org/10.1007/s42865-020-00005-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caniaux, G., J. Redelsperger, and J. P. Lafore, 1994: A numerical study of the stratiform region of a fast-moving squall line. Part I: General description and water and heat budgets. J. Atmos. Sci., 51, 20462074, https://doi.org/10.1175/1520-0469(1994)051<2046:ANSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capecchi, V., and R. Buizza, 2019: Reforecasting the flooding of Florence of 4 November 1966 with global and regional ensembles. J. Geophys. Res. Atmos., 124, 37433764, https://doi.org/10.1029/2018JD030231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capecchi, V., M. Perna, and A. Crisci, 2015: Statistical modelling of rainfall-induced shallow landsliding using static predictors and numerical weather predictions: Preliminary results. Nat. Hazards Earth Syst. Sci., 15, 7595, https://doi.org/10.5194/nhess-15-75-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassola, F., F. Ferrari, and A. Mazzino, 2015: Numerical simulations of Mediterranean heavy precipitation events with the WRF model: A verification exercise using different approaches. Atmos. Res., 164–165, 210225, https://doi.org/10.1016/j.atmosres.2015.05.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, https://doi.org/10.1029/95JD02165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cioni, G., 2014: Thermal structure and dynamical modeling of a Mediterranean tropical-like cyclone. M.S. thesis, Fisica del Sistema Terra, Universitá di Bologna, 130 pp.

  • Clark, A. J., 2019: Comparisons of QPFs derived from single-and multicore convection-allowing ensembles. Wea. Forecasting, 34, 19551964, https://doi.org/10.1175/WAF-D-19-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coiffier, J., 2011: Fundamentals of Numerical Weather Prediction. Cambridge University Press, 368 pp.

    • Crossref
    • Export Citation
  • Cuxart, J., P. Bougeault, and J.-L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126, 130, https://doi.org/10.1002/qj.49712656202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davolio, S., F. Silvestro, and P. Malguzzi, 2015: Effects of increasing horizontal resolution in a convection-permitting model on flood forecasting: The 2011 dramatic events in Liguria, Italy. J. Hydrometeor., 16, 18431856, https://doi.org/10.1175/JHM-D-14-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davolio, S., P. Malguzzi, O. Drofa, D. Mastrangelo, and A. Buzzi, 2020: The Piedmont flood of November 1994: A testbed of forecasting capabilities of the CNR-ISAC meteorological model suite. Bull. Atmos. Sci. Technol., 1, 263282, https://doi.org/10.1007/s42865-020-00015-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drofa, O., and P. Malguzzi, 2004: Parameterization of microphysical processes in a nonhydrostatic prediction model. Proc. 14th Int. Conf. on Clouds and Precipitation (ICCP), Bologna, Italy, ICCP, 19–23.

  • Duc, L., K. Saito, and H. Seko, 2013: Spatial-temporal fractions verification for high-resolution ensemble forecasts. Tellus, 65A, 18171, https://doi.org/10.3402/tellusa.v65i0.18171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 24612480, https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2009: Neighborhood verification: A strategy for rewarding close forecasts. Wea. Forecasting, 24, 14981510, https://doi.org/10.1175/2009WAF2222251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckel, F. A., and C. F. Mass, 2005: Aspects of effective mesoscale, short-range ensemble forecasting. Wea. Forecasting, 20, 328350, https://doi.org/10.1175/WAF843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2016: Strategy 2016–2025, the strength of a common goal. ECMWF, 32 pp., https://www.ecmwf.int/sites/default/files/ECMWF_Strategy_2016-2025.pdf.

  • Fiori, E., A. Comellas, L. Molini, N. Rebora, F. Siccardi, D. Gochis, S. Tanelli, and A. Parodi, 2014: Analysis and hindcast simulations of an extreme rainfall event in the Mediterranean area: The Genoa 2011 case. Atmos. Res., 138, 1329, https://doi.org/10.1016/j.atmosres.2013.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiori, E., L. Ferraris, L. Molini, F. Siccardi, D. Kranzlmueller, and A. Parodi, 2017: Triggering and evolution of a deep convective system in the Mediterranean Sea: Modelling and observations at a very fine scale. Quart. J. Roy. Meteor. Soc., 143, 927941, https://doi.org/10.1002/qj.2977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fresnay, S., A. Hally, C. Garnaud, E. Richard, and D. Lambert, 2012: Heavy precipitation events in the Mediterranean: Sensitivity to cloud physics parameterisation uncertainties. Nat. Hazards Earth Syst. Sci., 12, 26712688, https://doi.org/10.5194/nhess-12-2671-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frogner, I.-L., and Coauthors, 2019: HarmonEPS—The HARMONIE ensemble prediction system. Wea. Forecasting, 34, 19091937, https://doi.org/10.1175/WAF-D-19-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., Jr., 2002: Impact of verification grid-box size on warm-season QPF skill measures. Wea. Forecasting, 17, 12961302, https://doi.org/10.1175/1520-0434(2002)017<1296:IOVGBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasperoni, N. A., X. Wang, and Y. Wang, 2020: A comparison of methods to sample model errors for convection-allowing ensemble forecasts in the setting of multiscale initial conditions produced by the GSI-based EnVar assimilation system. Mon. Wea. Rev., 148, 11771203, https://doi.org/10.1175/MWR-D-19-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebhardt, C., S. Theis, P. Krahe, and V. Renner, 2008: Experimental ensemble forecasts of precipitation based on a convection-resolving model. Atmos. Sci. Lett., 9, 6772, https://doi.org/10.1002/asl.177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagelin, S., J. Son, R. Swinbank, A. McCabe, N. Roberts, and W. Tennant, 2017: The Met Office convective-scale ensemble, MOGREPS-UK. Quart. J. Roy. Meteor. Soc., 143, 28462861, https://doi.org/10.1002/qj.3135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hally, A., and Coauthors, 2015: Hydrometeorological multi-model ensemble simulations of the 4 November 2011 flash flood event in Genoa, Italy, in the framework of the DRIHM project. Nat. Hazards Earth Syst. Sci., 15, 537555, https://doi.org/10.5194/nhess-15-537-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hohenegger, C., and C. Schär, 2007: Predictability and error growth dynamics in cloud-resolving models. J. Atmos. Sci., 64, 44674478, https://doi.org/10.1175/2007JAS2143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., A. Walser, W. Langhans, and C. Schär, 2008: Cloud-resolving ensemble simulations of the August 2005 Alpine flood. Quart. J. Roy. Meteor. Soc., 134, 889904, https://doi.org/10.1002/qj.252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaksen, L., M. Bonavita, R. Buizza, M. Fisher, J. Haseler, M. Leutbecher, and L. Raynaud, 2010: Ensemble of data assimilations at ECMWF. ECMWF Tech. Memo. 636, 48 pp., https://www.ecmwf.int/sites/default/files/elibrary/2010/10125-ensemble-data-assimilations-ecmwf.pdf.

  • Jankov, I., J. Beck, J. Wolff, M. Harrold, J. B. Olson, T. Smirnova, C. Alexander, and J. Berner, 2019: Stochastically perturbed parameterizations in an HRRR-based ensemble. Mon. Wea. Rev., 147, 153173, https://doi.org/10.1175/MWR-D-18-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klasa, C., M. Arpagaus, A. Walser, and H. Wernli, 2018: An evaluation of the convection-permitting ensemble COSMO-E for three contrasting precipitation events in Switzerland. Quart. J. Roy. Meteor. Soc., 144, 744764, https://doi.org/10.1002/qj.3245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruse, C., D. Del Vento, R. Montuoro, M. Lubin, and S. McMillan, 2013: Evaluation of WRF scaling to several thousand cores on the Yellowstone supercomputer. Proc. Front Range Consortium for Research Computing Conf., Boulder, CO, Vol. 14.

  • Kühnlein, C., C. Keil, G. Craig, and C. Gebhardt, 2014: The impact of downscaled initial condition perturbations on convective-scale ensemble forecasts of precipitation. Quart. J. Roy. Meteor. Soc., 140, 15521562, https://doi.org/10.1002/qj.2238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lac, C., and Coauthors, 2018: Overview of the Meso-NH model version 5.4 and its applications. Geosci. Model Dev., 11, 19291969, https://doi.org/10.5194/gmd-11-1929-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S. T., M. Bonavita, and M. Leutbecher, 2015: On the impact of re-centring initial conditions for ensemble forecasts. Quart. J. Roy. Meteor. Soc., 141, 25712581, https://doi.org/10.1002/qj.2543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langkamp, T., and J. Böhner, 2011: Influence of the compiler on multi-CPU performance of WRFv3. Geosci. Model Dev., 4, 611623, https://doi.org/10.5194/gmd-4-611-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leoncini, G., R. S. Plant, S. L. Gray, and P. A. Clark, 2010: Perturbation growth at the convective scale for CSIP IOP18. Quart. J. Roy. Meteor. Soc., 136, 653670, https://doi.org/10.1002/qj.587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227, 35153539, https://doi.org/10.1016/j.jcp.2007.02.014.

  • Loken, E. D., A. J. Clark, M. Xue, and F. Kong, 2019: Spread and skill in mixed-and single-physics convection-allowing ensembles. Wea. Forecasting, 34, 305330, https://doi.org/10.1175/WAF-D-18-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lunet, T., C. Lac, F. Auguste, F. Visentin, V. Masson, and J. Escobar, 2017: Combination of WENO and explicit Runge–Kutta methods for wind transport in the Meso-NH model. Mon. Wea. Rev., 145, 38173838, https://doi.org/10.1175/MWR-D-16-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malardel, S., N. Wedi, W. Deconinck, M. Diamantakis, C. Kühnlein, G. Mozdzynski, M. Hamrud, and P. Smolarkiewicz, 2016: A new grid for the IFS. ECMWF Newsletter, No. 146, ECMWF, Reading, United Kingdom, 23–28, https://www.ecmwf.int/sites/default/files/elibrary/2016/17262-new-grid-ifs.pdf.

  • Malguzzi, P., G. Grossi, A. Buzzi, R. Ranzi, and R. Buizza, 2006: The 1966 “century” flood in Italy: A meteorological and hydrological revisitation. J. Geophys. Res., 111, D24106, https://doi.org/10.1029/2006JD007111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291303.

  • Masson, V., and Coauthors, 2013: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci. Model Dev., 6, 929960, https://doi.org/10.5194/gmd-6-929-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., and R. Rotunno, 2009: Numerical simulations of conditionally unstable flows over a mountain ridge. J. Atmos. Sci., 66, 18651885, https://doi.org/10.1175/2009JAS2902.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119, https://doi.org/10.1002/qj.49712252905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montani, A., D. Cesari, C. Marsigli, and T. Paccagnella, 2011: Seven years of activity in the field of mesoscale ensemble forecasting by the COSMO-LEPS system: Main achievements and open challenges. Tellus, 63A, 605624, https://doi.org/10.1111/j.1600-0870.2010.00499.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morcrette, J., H. W. Barker, J. Cole, M. J. Iacono, and R. Pincus, 2008: Impact of a new radiation package, McRad, in the ECMWF Integrated Forecasting System. Mon. Wea. Rev., 136, 47734798, https://doi.org/10.1175/2008MWR2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moreno, R., E. Arias, D. Cazorla, J. Pardo, and F. Tapiador, 2020: Seeking the best Weather Research and Forecasting model performance: An empirical score approach. J. Supercomput., 76, 96299653, https://doi.org/10.1007/s11227-020-03219-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peralta, C., Z. Ben Bouallègue, S. Theis, C. Gebhardt, and M. Buchhold, 2012: Accounting for initial condition uncertainties in COSMO-DE-EPS. J. Geophys. Res., 117, D07108, https://doi.org/10.1029/2011JD016581.

    • Search Google Scholar
    • Export Citation
  • Raynaud, L., and F. Bouttier, 2016: Comparison of initial perturbation methods for ensemble prediction at convective scale. Quart. J. Roy. Meteor. Soc., 142, 854866, https://doi.org/10.1002/qj.2686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raynaud, L., and F. Bouttier, 2017: The impact of horizontal resolution and ensemble size for convective-scale probabilistic forecasts. Quart. J. Roy. Meteor. Soc., 143, 30373047, https://doi.org/10.1002/qj.3159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rebora, N., and Coauthors, 2013: Extreme rainfall in the Mediterranean: What can we learn from observations? J. Hydrometeor., 14, 906922, https://doi.org/10.1175/JHM-D-12-083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritter, B., and J.-F. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303325, https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601608, https://doi.org/10.1175/2008WAF2222159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, J. Berner, K. R. Fossell, C. Snyder, J. L. Anderson, and M. L. Weisman, 2014: Representing forecast error in a convection-permitting ensemble system. Mon. Wea. Rev., 142, 45194541, https://doi.org/10.1175/MWR-D-14-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and R. Ferretti, 2001: Mechanisms of intense Alpine rainfall. J. Atmos. Sci., 58, 17321749, https://doi.org/10.1175/1520-0469(2001)058<1732:MOIAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., 2019: Medium-range convection-allowing ensemble forecasts with a variable-resolution global model. Mon. Wea. Rev., 147, 29973023, https://doi.org/10.1175/MWR-D-18-0452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, K. R. Smith, and M. L. Weisman, 2014: Characterizing and optimizing precipitation forecasts from a convection-permitting ensemble initialized by a mesoscale ensemble Kalman filter. Wea. Forecasting, 29, 12951318, https://doi.org/10.1175/WAF-D-13-00145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, R. A. Sobash, K. R. Fossell, and M. L. Weisman, 2015a: NCAR’s experimental real-time convection-allowing ensemble prediction system. Wea. Forecasting, 30, 16451654, https://doi.org/10.1175/WAF-D-15-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, M. L. Weisman, R. A. Sobash, K. R. Fossell, K. W. Manning, and S. B. Trier, 2015b: A real-time convection-allowing ensemble prediction system initialized by mesoscale ensemble Kalman filter analyses. Wea. Forecasting, 30, 11581181, https://doi.org/10.1175/WAF-D-15-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, K. R. Fossell, R. A. Sobash, and M. L. Weisman, 2017: Toward 1-km ensemble forecasts over large domains. Mon. Wea. Rev., 145, 29432969, https://doi.org/10.1175/MWR-D-16-0410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siuta, D., G. West, H. Modzelewski, R. Schigas, and R. Stull, 2016: Viability of cloud computing for real-time numerical weather prediction. Wea. Forecasting, 31, 19851996, https://doi.org/10.1175/WAF-D-16-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiesi, A., M. M. Miglietta, D. Conte, O. Drofa, S. Davolio, P. Malguzzi, and A. Buzzi, 2016: Heavy rain forecasting by model initialization with LAPS: A case study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 26192627, https://doi.org/10.1109/JSTARS.2016.2520018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330, https://doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tracton, M. S., and E. Kalnay, 1993: Operational ensemble prediction at the National Meteorological Center: Practical aspects. Wea. Forecasting, 8, 379398, https://doi.org/10.1175/1520-0434(1993)008<0379:OEPATN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trini Castelli, S., A. Bisignano, A. Donateo, T. C. Landi, P. Martano, and P. Malguzzi, 2020: Evaluation of the turbulence parametrization in the MOLOCH meteorological model. Quart. J. Roy. Meteor. Soc., 146, 124140, https://doi.org/10.1002/qj.3661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vié, B., O. Nuissier, and V. Ducrocq, 2011: Cloud-resolving ensemble simulations of Mediterranean heavy precipitating events: Uncertainty on initial conditions and lateral boundary conditions. Mon. Wea. Rev., 139, 403423, https://doi.org/10.1175/2010MWR3487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Coauthors, 2011: The central European limited-area ensemble forecasting system: ALADIN-LAEF. Quart. J. Roy. Meteor. Soc., 137, 483502, https://doi.org/10.1002/qj.751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Zampieri, M., P. Malguzzi, and A. Buzzi, 2005: Sensitivity of quantitative precipitation forecasts to boundary layer parameterization: A flash flood case study in the Western Mediterranean. Nat. Hazards Earth Syst. Sci., 5, 603612, https://doi.org/10.5194/nhess-5-603-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 310 0 0
Full Text Views 826 421 172
PDF Downloads 369 88 1