Abstract
The quantitative precipitation forecast in the 9-km operational modeling system (without the use of a convection parameterization scheme) at the Shanghai Meteorological Service (SMS) usually suffers from excessive precipitation at the grid scale and less-structured precipitation patterns. Two scale-aware convection parameterizations were tested in the operational system to mitigate these deficiencies. Their impacts on the warm-season precipitation forecast over China were analyzed in case studies and two-month retrospective forecasts. The results from case studies show that the importance of convection parameterization depends on geographical regions and weather regimes. Considering a proper magnitude of parameterized convection can produce more realistic precipitation distribution and reduce excessive gridscale precipitation in southern China. In northeast and southwest China, however, the convection parameterization plays an insignificant role in precipitation forecast because of strong synoptic-scale forcing. A statistical evaluation of the two-month retrospective forecasts indicates that the forecast skill for precipitation in the 9-km operational system is improved by choosing proper convection parameterization. This study suggests that improvement in contemporary convection parameterizations is needed for their usage for various meteorological conditions and reasonable partitioning between parameterized and resolved convection.
© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).