Operational Precipitation Forecast over China Using the Weather Research and Forecasting (WRF) Model at a Gray-Zone Resolution: Impact of Convection Parameterization

Xu Zhang aShanghai Typhoon Institute, China Meteorological Administration, Shanghai, China
bInnovative Center of Regional High Resolution NWP, Shanghai, China

Search for other papers by Xu Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3132-7009
,
Yuhua Yang aShanghai Typhoon Institute, China Meteorological Administration, Shanghai, China
bInnovative Center of Regional High Resolution NWP, Shanghai, China

Search for other papers by Yuhua Yang in
Current site
Google Scholar
PubMed
Close
,
Baode Chen aShanghai Typhoon Institute, China Meteorological Administration, Shanghai, China
bInnovative Center of Regional High Resolution NWP, Shanghai, China

Search for other papers by Baode Chen in
Current site
Google Scholar
PubMed
Close
, and
Wei Huang aShanghai Typhoon Institute, China Meteorological Administration, Shanghai, China
bInnovative Center of Regional High Resolution NWP, Shanghai, China

Search for other papers by Wei Huang in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The quantitative precipitation forecast in the 9-km operational modeling system (without the use of a convection parameterization scheme) at the Shanghai Meteorological Service (SMS) usually suffers from excessive precipitation at the grid scale and less-structured precipitation patterns. Two scale-aware convection parameterizations were tested in the operational system to mitigate these deficiencies. Their impacts on the warm-season precipitation forecast over China were analyzed in case studies and two-month retrospective forecasts. The results from case studies show that the importance of convection parameterization depends on geographical regions and weather regimes. Considering a proper magnitude of parameterized convection can produce more realistic precipitation distribution and reduce excessive gridscale precipitation in southern China. In northeast and southwest China, however, the convection parameterization plays an insignificant role in precipitation forecast because of strong synoptic-scale forcing. A statistical evaluation of the two-month retrospective forecasts indicates that the forecast skill for precipitation in the 9-km operational system is improved by choosing proper convection parameterization. This study suggests that improvement in contemporary convection parameterizations is needed for their usage for various meteorological conditions and reasonable partitioning between parameterized and resolved convection.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuhua Yang, yangyh@typhoon.org.cn

Abstract

The quantitative precipitation forecast in the 9-km operational modeling system (without the use of a convection parameterization scheme) at the Shanghai Meteorological Service (SMS) usually suffers from excessive precipitation at the grid scale and less-structured precipitation patterns. Two scale-aware convection parameterizations were tested in the operational system to mitigate these deficiencies. Their impacts on the warm-season precipitation forecast over China were analyzed in case studies and two-month retrospective forecasts. The results from case studies show that the importance of convection parameterization depends on geographical regions and weather regimes. Considering a proper magnitude of parameterized convection can produce more realistic precipitation distribution and reduce excessive gridscale precipitation in southern China. In northeast and southwest China, however, the convection parameterization plays an insignificant role in precipitation forecast because of strong synoptic-scale forcing. A statistical evaluation of the two-month retrospective forecasts indicates that the forecast skill for precipitation in the 9-km operational system is improved by choosing proper convection parameterization. This study suggests that improvement in contemporary convection parameterizations is needed for their usage for various meteorological conditions and reasonable partitioning between parameterized and resolved convection.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuhua Yang, yangyh@typhoon.org.cn
Save
  • Arakawa, A., and C. M. Wu, 2013: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J. Atmos. Sci., 70, 19771992, https://doi.org/10.1175/JAS-D-12-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., N. Semane, P. Lopez, J.-P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734753, https://doi.org/10.1175/JAS-D-13-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewster, K., 1996: Implementation of a Bratseth analysis scheme including Doppler radar. Preprints, 15th Conf. on Weather Analysis and Forecasting, Norfolk, VA, Amer. Meteor. Soc., 92–95.

  • Brewster, K., 2002: Recent advances in the diabatic initialization of a non-hydrostatic numerical model. 15th Conf. on Numerical Weather Prediction/21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., J6.3, https://ams.confex.com/ams/pdfpapers/47414.pdf.

  • Case, J. L., J. Manobianco, T. D. Oram, T. Garner, P. F. Blottman, and S. M. Spratt, 2002: Local data integration over east-central Florida using the ARPS data analysis system. Wea. Forecasting, 17, 326, https://doi.org/10.1175/1520-0434(2002)017<0003:LDIOEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling and advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, H. R., and G. T.-J. Chen, 1995: Mei-yu frontogenesis. J. Atmos. Sci., 52, 21092120, https://doi.org/10.1175/1520-0469(1995)052<2109:MYF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, A., and D. R. Stauffer, 2006: On improving 4-km mesoscale model simulations. J. Appl. Meteor. Climatol., 45, 361381, https://doi.org/10.1175/JAM2341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, X., C. Liu, G. Fan, X. Liu, and C. Feng, 2016: Climatology and structures of southwest vortices in the NCEP Climate Forecast System Reanalysis. J. Climate, 29, 76757701, https://doi.org/10.1175/JCLI-D-15-0813.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerard, L., 2015: Model resolution issues and new approaches in the convection-permitting regimes. Parameterization of Atmospheric Convection, R. S. Plant and J. I. Yano, Eds., Vol. 2, World Scientific, 113–134.

    • Crossref
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520533, https://doi.org/10.1175/WAF-D-10-05038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., W. Wang, Y. C. Kwon, S.-Y. Hong, V. Tallapragada, and F. Yang, 2017: Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Wea. Forecasting, 32, 20052017, https://doi.org/10.1175/WAF-D-17-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J.-Y., and S.-Y. Hong, 2018: Precipitation forecast experiments using the Weather Research and Forecasting (WRF) Model at gray-zone resolutions. Wea. Forecasting, 33, 16051616, https://doi.org/10.1175/WAF-D-18-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J.-Y., S.-Y. Hong, and Y. C. Kwon, 2020: The performance of a revised simplified Arakawa–Schubert (SAS) convection scheme in the medium-range forecasts of the Korean Integrated Model (KIM). Wea. Forecasting, 35, 11131128, https://doi.org/10.1175/WAF-D-19-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., 2004: Comparison of heavy rainfall mechanisms in Korea and the central US. J. Meteor. Soc. Japan, 82, 14691479, https://doi.org/10.2151/jmsj.2004.1469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W., J.-W. Bao, X. Zhang, and B. Chen, 2018: Comparison of the vertical distributions of cloud properties from idealized extratropical deep convection simulations using various horizontal resolutions. Mon. Wea. Rev., 146, 833851, https://doi.org/10.1175/MWR-D-17-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, https://doi.org/10.1175/2008MWR2596.1.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y. C., and S.-Y. Hong, 2017: A mass-flux cumulus parameterization scheme across gray-zone resolutions. Mon. Wea. Rev., 145, 583598, https://doi.org/10.1175/MWR-D-16-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, H.-L., Q. Liu, J. Han, and R. Sun, 2014: Extending the simplified Arakawa-Schubert scheme for meso-scale model applications. NCEP Office Note 479, 10 pp., http://www.lib.ncep.noaa.gov/ncepofficenotes/files/on479.pdf.

  • Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97, 471489, https://doi.org/10.1175/1520-0493(1969)097<0471:MOPCT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skamarock, W. C., S. Park, J. B. Klemp, and C. Snyder, 2014: Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J. Atmos. Sci., 71, 43694381, https://doi.org/10.1175/JAS-D-14-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soares, P. M. M., P. M. A. Miranda, A. P. Siebesma, and J. Teixeira, 2004: An eddy-diffusivity/mass-flux parameterization for dry and shallow cumulus convection. Quart. J. Roy. Meteor. Soc., 130, 33653383, https://doi.org/10.1256/qj.03.223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. T., 2010: Numerical Weather and Climate Prediction. Cambridge University Press, 549 pp.

    • Crossref
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Z., and C. Bueh, 2015: Different types of cold vortex circulations over northeast China and their weather impacts. Mon. Wea. Rev., 143, 845863, https://doi.org/10.1175/MWR-D-14-00192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., D.-H. Wang, J.-D. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139170, https://doi.org/10.1007/s00703-001-0595-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., 2015: Closure. Parameterization of Atmospheric Convection, R. S. Plant and J. I. Yano, Eds., Vol. 1, World Scientific, 325–401.

    • Crossref
    • Export Citation
  • Zhang, D.-L., E.-Y. Hsie, and M. W. Moncrieff, 1988: A comparison of implicit and explicit predictions of convective and stratiform precipitating weather systems with a meso-beta-scale numerical model. Quart. J. Roy. Meteor. Soc., 114, 3160, https://doi.org/10.1002/qj.49711447903.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., J. S. Kain, M. Fritsch, and K. Gao, 1994: Comments on “Parameterization of convective precipitation in mesoscale numerical models: A critical review.” Mon. Wea. Rev., 122, 22222231, https://doi.org/10.1175/1520-0493(1994)122<2222:COOCPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., F. H. Carr, and K. Brewster, 1998: ADAS cloud analysis. Preprints, 12th Conf. on Numerical Weather Prediction, Phoenix, AZ, Amer. Meteor. Soc., 185–188.

  • Zheng, Y., K. Alapaty, J. A. Herwehe, A. D. Del Genio, and D. Niyogi, 2016: Improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) Model with an updated Kain–Fritsch scheme. Mon. Wea. Rev., 144, 833860, https://doi.org/10.1175/MWR-D-15-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation