Identifying the Development of a Tropical Depression into a Tropical Storm over the South China Sea

Huijun Huang aInstitute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China

Search for other papers by Huijun Huang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7371-6670
,
Jinnan Yuan aInstitute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China

Search for other papers by Jinnan Yuan in
Current site
Google Scholar
PubMed
Close
,
Guanhuan Wen aInstitute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China

Search for other papers by Guanhuan Wen in
Current site
Google Scholar
PubMed
Close
,
Xueyan Bi aInstitute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China

Search for other papers by Xueyan Bi in
Current site
Google Scholar
PubMed
Close
,
Ling Huang aInstitute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China

Search for other papers by Ling Huang in
Current site
Google Scholar
PubMed
Close
, and
Mingsen Zhou aInstitute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China

Search for other papers by Mingsen Zhou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical depressions formed over the South China Sea usually produce severe flooding and wind damage when they develop into a storm and make landfall. To provide an early warning, forecasters should know when, and if, a tropical depression will develop into a tropical storm. To better understand and predict such development, we examine the dynamic and thermodynamic variables of 74 tropical depressions over the South China Sea, 52 of which developed into storms, hereafter “developing,” with the remaining being classified as “nondeveloping.” Using the National Centers for Environmental Prediction Final (NCEP FNL) data, verified with ECMWF forecast data, we examine the dynamic and thermodynamic statistics that characterize these tropical cyclones. Based on these characteristics, we propose seven criteria to determine whether a tropical depression will develop. Five had been used before, but two new criteria are also found to be useful. These two are associated with the diabatic heating rate and help to determine whether a tropical cyclone diurnal cycle exists and whether the convection system remains intact in the center: 1) presence of a regular diurnal variation of the diabatic heating rate at the center and 2) occurrence of specific peaks in the radiative-heating profile. We test all seven criteria on all tropical depression cases in 2018/19 before the system developed or decayed, showing that these criteria can help to operationally identify whether or not a tropical depression develops into a tropical storm with an average lead time of 36.6 h.

Significance Statement

Tropical cyclones formed over the South China Sea usually produce severe flooding and wind damage. What determines if a given tropical depression will develop into a storm? We examine the dynamic and thermodynamic characteristics of tropical cyclones over the South China Sea, finding that established criteria plus characteristics of the diabatic heating rate can separate the developing from the nondeveloping cases. Applying these criteria to 11 tropical depression cases, we show that they can help forecasters predict whether or not a tropical depression will develop into a tropical storm.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Huijun Huang, hjhuang@gd121.cn

Abstract

Tropical depressions formed over the South China Sea usually produce severe flooding and wind damage when they develop into a storm and make landfall. To provide an early warning, forecasters should know when, and if, a tropical depression will develop into a tropical storm. To better understand and predict such development, we examine the dynamic and thermodynamic variables of 74 tropical depressions over the South China Sea, 52 of which developed into storms, hereafter “developing,” with the remaining being classified as “nondeveloping.” Using the National Centers for Environmental Prediction Final (NCEP FNL) data, verified with ECMWF forecast data, we examine the dynamic and thermodynamic statistics that characterize these tropical cyclones. Based on these characteristics, we propose seven criteria to determine whether a tropical depression will develop. Five had been used before, but two new criteria are also found to be useful. These two are associated with the diabatic heating rate and help to determine whether a tropical cyclone diurnal cycle exists and whether the convection system remains intact in the center: 1) presence of a regular diurnal variation of the diabatic heating rate at the center and 2) occurrence of specific peaks in the radiative-heating profile. We test all seven criteria on all tropical depression cases in 2018/19 before the system developed or decayed, showing that these criteria can help to operationally identify whether or not a tropical depression develops into a tropical storm with an average lead time of 36.6 h.

Significance Statement

Tropical cyclones formed over the South China Sea usually produce severe flooding and wind damage. What determines if a given tropical depression will develop into a storm? We examine the dynamic and thermodynamic characteristics of tropical cyclones over the South China Sea, finding that established criteria plus characteristics of the diabatic heating rate can separate the developing from the nondeveloping cases. Applying these criteria to 11 tropical depression cases, we show that they can help forecasters predict whether or not a tropical depression will develop into a tropical storm.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Huijun Huang, hjhuang@gd121.cn
Save
  • Bessho, K., T. Nakazawa, S. Nishimura, and K. Kato, 2010: Warm core structures in organized cloud clusters developing or not developing into tropical storms observed by the Advanced Microwave Sounding Unit. Mon. Wea. Rev., 138, 26242643, https://doi.org/10.1175/2010MWR3073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and Coauthors, 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) field experiment—Bringing new technologies to the hurricane intensity problem. Bull. Amer. Meteor. Soc., 94, 345363, https://doi.org/10.1175/BAMS-D-11-00232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., E. Blake, M. DeMaria, A. Penny, A. Latto, E. Rappaport, and V. Tallapragada, 2020: Recent progress in tropical cyclone intensity forecasting at the National Hurricane Center. Wea. Forecasting, 35, 19131922, https://doi.org/10.1175/WAF-D-20-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L. S., Z. X. Luo, and Y. Li, 2004: Research advances on tropical cyclone landfall process (in Chinese). Acta Meteor. Sin., 62, 541549.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, https://doi.org/10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 12841305, https://doi.org/10.1175/JAS-D-11-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, Y. H., L. S. Chen, J. Y. Liang, Y. Wang, L. G. Wu, X. P. Cui, L. M. Ma, and Q. Q. Li, 2014: Research progress in the unusual variations of typhoons before and after landfalling (in Chinese). Acta Meteor. Sin., 72, 969986.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., C. D. Thorncroft, and C. S. Velden, 2014: The tropical cyclone diurnal cycle of mature hurricanes. Mon. Wea. Rev., 142, 39003919, https://doi.org/10.1175/MWR-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., C. D. Thorncroft, and D. S. Nolan, 2019: Tropical cyclone diurnal cycle signals in a hurricane nature run. Mon. Wea. Rev., 147, 363388, https://doi.org/10.1175/MWR-D-18-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, https://doi.org/10.5194/acp-9-5587-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., and P. A. Harr, 2008: Tropical cyclone structure (TCS08) field experiment science basis, observational platforms, and strategy. Asia-Pac. J. Atmos. Sci., 44, 209231.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155, https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31, 75104, https://doi.org/10.1146/annurev.earth.31.100901.141259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2018: 100 years of progress in tropical cyclone research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.

    • Crossref
    • Export Citation
  • Frank, W. M., 1984: A composite analysis of the core of a mature hurricane. Mon. Wea. Rev., 112, 24012420, https://doi.org/10.1175/1520-0493(1984)112<2401:ACAOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1987: Tropical cyclone formation. Global Perspectives of Tropical Cyclones, R. L. Elsberry, Ed., Office of Naval Research, 53–90.

  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, https://doi.org/10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, C., and Z. Wang, 2014: Water vapor budget in a developing tropical cyclone and its implication for tropical cyclone formation. J. Atmos. Sci., 71, 43214332, https://doi.org/10.1175/JAS-D-13-0378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, B., M. S. Peng, T. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Wea. Rev., 140, 10671080, https://doi.org/10.1175/2011MWR3618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769, https://doi.org/10.1007/BF01277501.

  • Gray, W. M., and R. W. Jacobson, 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, https://doi.org/10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and D. T. Rubsam, 1968: Hurricane Hilda, 1964: II. Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96, 617636, https://doi.org/10.1175/1520-0493(1968)096<0617:HH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104, 418442, https://doi.org/10.1175/1520-0493(1976)104<0418:TSOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helms, C. N., and R. E. Hart, 2015: The evolution of dropsonde derived kinematic and thermodynamic structures in developing and nondeveloping Atlantic tropical convective systems. Mon. Wea. Rev., 143, 31093135, https://doi.org/10.1175/MWR-D-14-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic Press, 553 pp.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H. J., J. N. Yuan, C. H. Li, and W. K. Mao, 2014: Comparison of the structural characteristics of developed versus undeveloped mid-level vortexes. J. Trop. Meteor., 20, 5765.

    • Search Google Scholar
    • Export Citation
  • Huang, H. J., H. N. Liu, J. Huang, W. K. Mao, and X. Y. Bi, 2015: Atmospheric boundary layer structure and turbulence during sea fog on the southern China coast. Mon. Wea. Rev., 143, 19071923, https://doi.org/10.1175/MWR-D-14-00207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iribarne, J. V., and W. L. Godson, 1981: Atmospheric Thermodynamics. 2nd ed. D. Reidel Publishing Company, 259 pp.

    • Crossref
    • Export Citation
  • Kepert, J. D., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 24692484, https://doi.org/10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2010: Tropical cyclone structure and dynamics. Global Perspectives on Tropical Cyclones, 2nd ed. J. Chan and J. D. Kepert, Eds., World Scientific, 3–53.

    • Crossref
    • Export Citation
  • Kepert, J. D., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501, https://doi.org/10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2013: Cloud clusters and tropical cyclogenesis: Developing and nondeveloping systems and their large-scale environment. Mon. Wea. Rev., 141, 192210, https://doi.org/10.1175/MWR-D-11-00239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., 2013: An investigation of composite dropsonde profiles for developing and nondeveloping tropical waves during the 2010 PREDICT field campaign. J. Atmos. Sci., 70, 542558, https://doi.org/10.1175/JAS-D-12-052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsen, R. J., and M. L. Marx, 2018: An Introduction to Mathematical Statistics and Its Applications. 6th ed. Pearson, 742 pp.

  • Lee, C.-S., Y.-L. Lin, and K. K. W. Cheung, 2006: Tropical cyclone formations in the South China Sea associated with the mei-yu front. Mon. Wea. Rev., 134, 26702687, https://doi.org/10.1175/MWR3221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, B. Q., and Q. Q. Zhang, 1988: Comparisons between developed and undeveloped depressions in the South China Sea (in Chinese). J. Trop. Oceanogr., 1, 1018.

    • Search Google Scholar
    • Export Citation
  • Lin, L. X., Q. Q. Liang, and Z. Huang, 2006: Analysis of circulation pattern of rapidly intensified offshore tropical cyclones of south China (in Chinese). Meteor. Mon., 32, 1418.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., and C.-S. Lee, 2011: An analysis of tropical cyclone formations in the South China Sea during the late season. Mon. Wea. Rev., 139, 27482760, https://doi.org/10.1175/2011MWR3495.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, Z., Y. Q. Wang, and G. Wang, 2016: Impact of intraseasonal oscillations on the activity of tropical cyclones in summer over the South China Sea. Part I: Local tropical cyclones. J. Climate, 29, 855868, https://doi.org/10.1175/JCLI-D-15-0617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C. X., and G. X. Rong, 1995: The climatic analysis of the relationship between the explosive development of typhoon and its environment flow field (in Chinese). J. Trop. Meteor., 11, 5156.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and R. M. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 11321151, https://doi.org/10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, B. I., 1958: On the maximum intensity of hurricanes. J. Meteor., 15, 184195, https://doi.org/10.1175/1520-0469(1958)015<0184:OTMIOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., S. Skubis, D. Vollaro, F. Alsheimer, and H. E. Willoughby, 1998: Potential vorticity analysis of tropical cyclone intensification. J. Atmos. Sci., 55, 26322644, https://doi.org/10.1175/1520-0469(1998)055<2632:PVAOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2012: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS08) field experiment—Part 2: Observations of the convective environment. Atmos. Chem. Phys., 12, 40014009, https://doi.org/10.5194/acp-12-4001-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2017: Recent developments in the fluid dynamics of tropical cyclones. Annu. Rev. Fluid Mech., 49, 541574, https://doi.org/10.1146/annurev-fluid-010816-060022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., L. L. Lussier III, R. W. Moore, and Z. Wang, 2010: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment—Part 1: The role of the easterly wave critical layer. Atmos. Chem. Phys., 10, 98799900, https://doi.org/10.5194/acp-10-9879-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and Coauthors, 2012: The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT): Scientific basis, new analysis tools, and some first results. Bull. Amer. Meteor. Soc., 93, 153172, https://doi.org/10.1175/BAMS-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • North, G. R., and T. L. Erukhimova, 2009: Atmospheric Thermodynamics: Elementary Physics and Chemistry. Cambridge University Press, 280 pp.

  • Park, M., and R. L. Elsberry, 2013: Latent heating and cooling rates in developing and nondeveloping tropical disturbances during TCS-08: TRMM PR versus ELDORA retrievals. J. Atmos. Sci., 70, 1535, https://doi.org/10.1175/JAS-D-12-083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, and C. López Carrillo, 2011: Thermodynamics of tropical cyclogenesis in the northwest Pacific. J. Geophys. Res., 116, D18101, https://doi.org/10.1029/2011JD015624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., and R. D. Torn, 2017: Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Mon. Wea. Rev., 145, 17171738, https://doi.org/10.1175/MWR-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223, https://doi.org/10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2012: Observations of the convective environments in developing and non-developing tropical disturbances. Quart. J. Roy. Meteor. Soc., 138, 17211739, https://doi.org/10.1002/qj.1910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tory, K. J., and W. M. Frank, 2010: Tropical cyclone formation. Global Perspectives on Tropical Cyclones, 2nd ed. J. Chan and J. D. Kepert, Eds., World Scientific, 55–91.

    • Crossref
    • Export Citation
  • Tran-Quang, D., H. Pham-Thanh, T. Vu, C. Kieu, and T. Phan-Van, 2020: Climatic shift of the tropical cyclone activity affecting Vietnam’s coastal region. J. Appl. Meteor. Climatol., 59, 17551768, https://doi.org/10.1175/JAMC-D-20-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. 2nd ed. Academic Press, 483 pp.

  • Wang, L., 2017: Tropical cyclogenesis associated with four types of summer monsoon circulation over the South China Sea. Int. J. Climatol., 37, 42294236, https://doi.org/10.1002/joc.4982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., Y. Rao, Z.-M. Tan, and D. Schönemann, 2015: A statistical analysis of the effects of vertical wind shear on tropical cyclone intensity change over the western North Pacific. Mon. Wea. Rev., 143, 34343453, https://doi.org/10.1175/MWR-D-15-0049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2018: What is the key feature of convection leading up to tropical cyclone formation? J. Atmos. Sci., 75, 16091629, https://doi.org/10.1175/JAS-D-17-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., and W. M. Gray, 1988: Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Mon. Wea. Rev., 116, 10321043, https://doi.org/10.1175/1520-0493(1988)116<1032:TSARBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, G. H., G. Huang, H. J. Huang, C. X. Liu, and X. Y. Bi, 2019: Observed rainfall asymmetry of tropical cyclone in the process of making landfall in Guangdong, South China. Int. J. Climatol., 39, 33793395, https://doi.org/10.1002/joc.6027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, J. Y., 1996: Climatological characteristics of rapidly intensifying tropical cyclones over the offshore of China (in Chinese). Quart. J. Appl. Meteor., 7, 2835.

    • Search Google Scholar
    • Export Citation
  • Yang, G., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ying, M., W. Zhang, H. Yu, X. Lu, J. Feng, Y. Fan, Y. Zhu, and D. Chen, 2014: An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287301, https://doi.org/10.1175/JTECH-D-12-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, J. N., D. X. Wang, C. X. Liu, J. Huang, and H. J. Huang, 2007: The characteristic differences of tropical cyclones forming over the western North Pacific and the South China Sea. Acta Oceanol. Sin., 26, 2943.

    • Search Google Scholar
    • Export Citation
  • Yuan, J. N., T. Li, and D. X. Wang, 2015: Precursor synoptic-scale disturbances associated with tropical cyclogenesis in the South China Sea during 2000-2011. Int. J. Climatol., 35, 34543470, https://doi.org/10.1002/joc.4219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawislak, J., and E. J. Zipser, 2014: Analysis of the thermodynamic properties of developing and nondeveloping tropical disturbances using a comprehensive dropsonde dataset. Mon. Wea. Rev., 142, 12501264, https://doi.org/10.1175/MWR-D-13-00253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., Y. Wang, and C.-C. Wu, 2007: Environmental dynamical control of tropical cyclone intensity—An observational study. Mon. Wea. Rev., 135, 3859, https://doi.org/10.1175/MWR3278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., L. Wu, and Q. Liu, 2009: Tropical cyclone damages in China: 1983–2006. Bull. Amer. Meteor. Soc., 90, 489496, https://doi.org/10.1175/2008BAMS2631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., W. Lin, Y. Lin, M. Zhang, H. Yu, K. Cao, and W. Xue, 2019: Prediction of tropical cyclone genesis from mesoscale convective systems using machine learning. Wea. Forecasting, 34, 10351049, https://doi.org/10.1175/WAF-D-18-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., B. Fu, M. S. Peng, and T. Li, 2015: Discriminating developing versus nondeveloping tropical disturbances in the western North Pacific through decision tree analysis. Wea. Forecasting, 30, 446454, https://doi.org/10.1175/WAF-D-14-00023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 312 0 0
Full Text Views 276 140 19
PDF Downloads 289 106 17