Evaluating Convection-Permitting Ensemble Forecasts of Precipitation over Southeast Asia

Samantha Ferrett aDepartment of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Samantha Ferrett in
Current site
Google Scholar
PubMed
Close
,
Thomas H. A. Frame aDepartment of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Thomas H. A. Frame in
Current site
Google Scholar
PubMed
Close
,
John Methven aDepartment of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by John Methven in
Current site
Google Scholar
PubMed
Close
,
Christopher E. Holloway aDepartment of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Christopher E. Holloway in
Current site
Google Scholar
PubMed
Close
,
Stuart Webster bMet Office, Exeter, United Kingdom

Search for other papers by Stuart Webster in
Current site
Google Scholar
PubMed
Close
,
Thorwald H. M. Stein aDepartment of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Thorwald H. M. Stein in
Current site
Google Scholar
PubMed
Close
, and
Carlo Cafaro aDepartment of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Carlo Cafaro in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Forecasting rainfall in the tropics is a major challenge for numerical weather prediction. Convection-permitting (CP) models are intended to enable forecasts of high-impact weather events. Development and operation of these models in the tropics has only just been realized. This study describes and evaluates a suite of recently developed Met Office Unified Model CP ensemble forecasts over three domains in Southeast Asia, covering Malaysia, Indonesia, and the Philippines. The fractions skill score is used to assess the spatial scale dependence of skill in forecasts of precipitation during October 2018–March 2019. CP forecasts are skillful for 3-h precipitation accumulations at spatial scales greater than 200 km in all domains during the first day of forecasts. Skill decreases with lead time but varies depending on time of day over Malaysia and Indonesia, due to the importance of the diurnal cycle in driving rainfall in those regions. Skill is largest during daytime when precipitation is over land and is constrained by orography. Comparison of CP ensembles using 2.2-, 4.5-, and 8.8-km grid spacing and an 8.8-km ensemble with parameterized convection reveals that varying resolution has much less effect on ensemble skill and spread than the representation of convection. The parameterized ensemble is less skillful than CP ensembles over Malaysia and Indonesia and more skillful over the Philippines; however, the parameterized ensemble has large drops in skill and spread related to deficiencies in its diurnal cycle representation. All ensembles are underspread indicating that future model development should focus on this issue.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Samantha Ferrett, s.j.ferrett@reading.ac.uk

Abstract

Forecasting rainfall in the tropics is a major challenge for numerical weather prediction. Convection-permitting (CP) models are intended to enable forecasts of high-impact weather events. Development and operation of these models in the tropics has only just been realized. This study describes and evaluates a suite of recently developed Met Office Unified Model CP ensemble forecasts over three domains in Southeast Asia, covering Malaysia, Indonesia, and the Philippines. The fractions skill score is used to assess the spatial scale dependence of skill in forecasts of precipitation during October 2018–March 2019. CP forecasts are skillful for 3-h precipitation accumulations at spatial scales greater than 200 km in all domains during the first day of forecasts. Skill decreases with lead time but varies depending on time of day over Malaysia and Indonesia, due to the importance of the diurnal cycle in driving rainfall in those regions. Skill is largest during daytime when precipitation is over land and is constrained by orography. Comparison of CP ensembles using 2.2-, 4.5-, and 8.8-km grid spacing and an 8.8-km ensemble with parameterized convection reveals that varying resolution has much less effect on ensemble skill and spread than the representation of convection. The parameterized ensemble is less skillful than CP ensembles over Malaysia and Indonesia and more skillful over the Philippines; however, the parameterized ensemble has large drops in skill and spread related to deficiencies in its diurnal cycle representation. All ensembles are underspread indicating that future model development should focus on this issue.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Samantha Ferrett, s.j.ferrett@reading.ac.uk
Save
  • Beck, J., F. Bouttier, L. Wiegand, C. Gebhardt, C. Eagle, and N. Roberts, 2016: Development and verification of two convection-allowing multi-model ensembles over western Europe. Quart. J. Roy. Meteor. Soc., 142, 28082826, https://doi.org/10.1002/qj.2870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bednarczyk, C. N., and B. C. Ancell, 2015: Ensemble sensitivity analysis applied to a southern plains convective event. Mon. Wea. Rev., 143, 230249, https://doi.org/10.1175/MWR-D-13-00321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birch, C. E., J. H. Marsham, D. J. Parker, and C. M. Taylor, 2014a: The scale dependence and structure of convergence fields preceding the initiation of deep convection. Geophys. Res. Lett., 41, 47694776, https://doi.org/10.1002/2014GL060493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birch, C. E., D. J. Parker, J. H. Marsham, D. Copsey, and L. Garcia-Carreras, 2014b: A seamless assessment of the role of convection in the water cycle of the West African monsoon. J. Geophys. Res. Atmos., 119, 28902912, https://doi.org/10.1002/2013JD020887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birch, C. E., M. J. Roberts, L. Garcia-Carreras, D. Ackerley, M. J. Reeder, A. P. Lock, and R. Schiemann, 2015: Sea-breeze dynamics and convection initiation: The influence of convective parameterization in weather and climate model biases. J. Climate, 28, 80938108, https://doi.org/10.1175/JCLI-D-14-00850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birch, C. E., S. Webster, S. C. Peatman, D. J. Parker, A. J. Matthews, Y. Li, and M. E. E. Hassim, 2016: Scale interactions between the MJO and the western Maritime Continent. J. Climate, 29, 24712492, https://doi.org/10.1175/JCLI-D-15-0557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bousquet, O., D. Barbary, S. Bielli, S. Kebir, L. Raynaud, S. Malardel, and G. Faure, 2020: An evaluation of tropical cyclone forecast in the southwest Indian Ocean basin with AROME-Indian Ocean convection-permitting numerical weather predicting system. Atmos. Sci. Lett., 21, e950, https://doi.org/10.1002/asl.950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowler, N., A. Arribas, K. Mylne, K. Robertson, and S. Beare, 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703722, https://doi.org/10.1002/qj.234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bush, M., and Coauthors, 2020: The first Met Office Unified model–JULES regional atmosphere and land configuration, RAL1. Geosci. Model Dev., 13, 19992029, https://doi.org/10.5194/gmd-13-1999-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cafaro, C., T. H. A. Frame, J. Methven, N. Roberts, and J. Bröcker, 2019: The added value of convection-permitting ensemble forecasts of sea breeze compared to a Bayesian forecast driven by the global ensemble. Quart. J. Roy. Meteor. Soc., 145, 17801798, https://doi.org/10.1002/qj.3531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cafaro, C., and Coauthors, 2021: Do convection-permitting ensembles lead to more skillful short-range probabilistic rainfall forecasts over tropical East Africa? Wea. Forecasting, 36, 697716, https://doi.org/10.1175/WAF-D-20-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., P. A. Harr, and H. J. Chen, 2005: Synoptic disturbances over the equatorial South China Sea and western Maritime Continent during boreal winter. Mon. Wea. Rev., 133, 489503, https://doi.org/10.1175/MWR-2868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, P., N. Roberts, H. Lean, S. P. Ballard, and C. Charlton-Perez, 2016: Convection-permitting models: A step-change in rainfall forecasting. Meteor. Appl., 23, 165181, https://doi.org/10.1002/met.1538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dey, S. R. A., G. Leoncini, N. M. Roberts, R. S. Plant, and S. Migliorini, 2014: A spatial view of ensemble spread in convection permitting ensembles. Mon. Wea. Rev., 142, 40914107, https://doi.org/10.1175/MWR-D-14-00172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dipankar, A., and Coauthors, 2020: SINGV: A convective-scale weather forecast model for Singapore. Quart. J. Roy Meteor. Soc., 146, 41314146, https://doi.org/10.1002/qj.3895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrett, S., G. Yang, S. J. Woolnough, J. Methven, K. Hodges, and C. E. Holloway, 2020: Linking extreme precipitation in Southeast Asia to equatorial waves. Quart. J. Roy. Meteor. Soc., 146, 665684, https://doi.org/10.1002/qj.3699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebhardt, C., S. E. Theis, M. Paulat, and Z. Ben Bouallègue, 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res., 100, 168177, https://doi.org/10.1016/j.atmosres.2010.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golding, B. W., and Coauthors, 2014: Forecasting capabilities for the London 2012 Olympics. Bull. Amer. Meteor. Soc., 95, 883896, https://doi.org/10.1175/BAMS-D-13-00102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagelin, S., J. Son, R. Swinbank, A. McCabe, N. Roberts, and W. Tennant, 2017: The Met Office convective-scale ensemble, MOGREPS-UK. Quart. J. Roy. Meteor. Soc., 143, 28462861, https://doi.org/10.1002/qj.3135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, J.-I., S. Mori, H. Kubota, M. D. Yamanaka, U. Haryoko, S. Lestari, R. Sulistyowati, and F. Syamsudin, 2012: Interannual rainfall variability over northwestern Jawa and its relation to the Indian Ocean dipole and El Niño–Southern Oscillation events. SOLA, 8, 6972, https://doi.org/10.2151/sola.2012-018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., D. J. Kirshbaum, N. M. Roberts, and G. Leoncini, 2013: Sensitivities of a squall line over central Europe in a convective-scale ensemble. Mon. Wea. Rev., 141, 112133, https://doi.org/10.1175/MWR-D-12-00013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heng, B. C. P., and Coauthors, 2020: SINGV-DA: A data assimilation system for convective-scale numerical weather prediction over Singapore. Quart. J. Roy. Meteor. Soc., 146, 19231938, https://doi.org/10.1002/qj.3774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and C. Schar, 2007: Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Amer. Meteor. Soc., 88, 17831794, https://doi.org/10.1175/BAMS-88-11-1783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., S. J. Woolnough, and G. M. S. Lister, 2013: The effects of explicit versus parameterized convection on the MJO in a large-domain high-resolution tropical case study. Part I: Characterization of large-scale organization and propagation. J. Atmos. Sci., 70, 13421369, https://doi.org/10.1175/JAS-D-12-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2019: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 06, 38 pp., https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V06.pdf.

  • Johnson, S. J., and Coauthors, 2016: The resolution sensitivity of the South Asian monsoon and Indo-Pacific in a global 0.35° AGCM. Climate Dyn., 46, 807831, https://doi.org/10.1007/s00382-015-2614-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., N. M. Roberts, C. A. Senior, and M. J. Roberts, 2012: Realism of rainfall in a very high-resolution regional climate model. J. Climate, 25, 57915806, https://doi.org/10.1175/JCLI-D-11-00562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, S., and V. Maggioni, 2019: Assessment of level-3 gridded Global Precipitation Mission (GPM) products over oceans. Remote Sens., 11, 255, https://doi.org/10.3390/rs11030255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lestari, S., A. King, C. Vincent, D. Karoly, and A. Protat, 2019: Seasonal dependence of rainfall extremes in and around Jakarta, Indonesia. Wea. Climate Extremes, 24, 100202, https://doi.org/10.1016/j.wace.2019.100202.

    • Search Google Scholar
    • Export Citation
  • Lim, S. Y., C. Marzin, P. Xavier, C. P. Chang, B. Timbal, S. Yee Lim, C. Marzin, and P. Xavier, 2017: Impacts of boreal winter monsoon cold surges and the interaction with MJO on Southeast Asia rainfall. J. Climate, 30, 42674281, https://doi.org/10.1175/JCLI-D-16-0546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J. L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, https://doi.org/10.1175/JCLI3735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loken, E. D., A. J. Clark, M. Xue, and F. Kong, 2017: Comparison of next-day probabilistic severe weather forecasts from coarse- and fine-resolution CAMs and a convection-allowing ensemble. Wea. Forecasting, 32, 14031421, https://doi.org/10.1175/WAF-D-16-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Love, B. S., A. J. Matthews, and G. M. S. Lister, 2011: The diurnal cycle of precipitation over the Maritime Continent in a high-resolution atmospheric model. Quart. J. Roy. Meteor. Soc., 137, 934947, https://doi.org/10.1002/qj.809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumoto, J., and Coauthors, 2017: An overview of the Asian Monsoon Years 2007–2012 (AMY) and multi-scale interactions in the extreme rainfall events over the Indonesian Maritime Continent. The Global Monsoon System: Research and Forecast, C.-P. Chang et al., Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 9, World Scientific, 365–385.

    • Crossref
    • Export Citation
  • Met Office, 2018: Iris: A Python library for analysing and visualising meteorological and oceanographic data sets, v.2.0. Accessed 5 October 2018, https://scitools.org.uk/.

  • Mittermaier, M., N. Roberts, and S. A. Thompson, 2013: A long-term assessment of precipitation forecast skill using the fractions skill score. Meteor. Appl., 20, 176186, https://doi.org/10.1002/met.296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miura, H., M. Satoh, T. Nasuno, A. T. Noda, and K. Oouchi, 2007: A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 17631765, https://doi.org/10.1126/science.1148443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohd Nor, M. F. F., C. E. Holloway, and P. M. Inness, 2020: The role of local orography on the development of a severe rainfall event over western peninsular Malaysia: A case study. Mon. Wea. Rev., 148, 21912209, https://doi.org/10.1175/MWR-D-18-0413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, S., H. Jun-Ichi, M. D. Yamanaka, N. Okamoto, F. Murata, N. Sakurai, and H. Hashiguchi, 2004: Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 20212039, https://doi.org/10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. Mon. Wea. Rev., 16, 834848, https://doi.org/10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pearson, K. J., R. J. Hogan, R. P. Allan, G. M. S. Lister, and C. E. Holloway, 2010: Evaluation of the model representation of the evolution of convective systems using satellite observations of outgoing longwave radiation. J. Geophys. Res., 115, D20206, https://doi.org/10.1029/2010JD014265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, K. J., G. M. S. Lister, C. E. Birch, R. P. Allan, R. J. Hogan, and S. J. Woolnough, 2014: Modelling the diurnal cycle of tropical convection across the ‘grey zone.’ Quart. J. Roy. Meteor. Soc., 140, 491499, https://doi.org/10.1002/qj.2145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peatman, S. C., A. J. Matthews, and D. P. Stevens, 2014: Propagation of the Madden–Julian oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quart. J. Roy. Meteor. Soc., 140, 814825, https://doi.org/10.1002/qj.2161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peatman, S. C., J. Methven, and S. J. Woolnough, 2015: Propagation of the Madden–Julian oscillation and scale interaction with the diurnal cycle in a high-resolution GCM. Climate Dyn., 45, 29012918, https://doi.org/10.1007/s00382-015-2513-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peatman, S. C., J. Methven, and S. J. Woolnough, 2018: Isolating the effects of moisture entrainment on convectively coupled equatorial waves in an aquaplanet GCM. J. Atmos. Sci., 75, 31393157, https://doi.org/10.1175/JAS-D-18-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porson, A. N., S. Hagelin, D. F. A. Boyd, N. M. Roberts, R. North, S. Webster, and J. C. Lo, 2019: Extreme rainfall sensitivity in convective-scale ensemble modelling over Singapore. Quart. J. Roy. Meteor. Soc., 145, 30043022, https://doi.org/10.1002/qj.3601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porson, A. N., and Coauthors, 2020: Recent upgrades to the Met Office convective-scale ensemble: An hourly time-lagged 5-day ensemble. Quart. J. Roy. Meteor. Soc., 146, 32453265, https://doi.org/10.1002/qj.3844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, J. H., 2008: Why precipitation is mostly concentrated over islands in the Maritime Continent. J. Atmos. Sci., 65, 14281441, https://doi.org/10.1175/2007JAS2422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raynaud, L., and F. Bouttier, 2017: The impact of horizontal resolution and ensemble size for convective-scale probabilistic forecasts. Quart. J. Roy. Meteor. Soc., 143, 30373047, https://doi.org/10.1002/qj.3159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rezacova, D., P. Zacharov, and Z. Sokol, 2009: Uncertainty in the area-related QPF for heavy convective precipitation. Atmos. Res., 93, 238246, https://doi.org/10.1016/j.atmosres.2008.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, B., I. L. Jirak, A. J. Clark, S. J. Weiss, and J. S. Kain, 2019: Postprocessing and visualization techniques for convection-allowing ensembles. Bull. Amer. Meteor. Soc., 100, 12451258, https://doi.org/10.1175/BAMS-D-18-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., H. Miura, M. Satoh, Y. N. Takayabu, and Y. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826, https://doi.org/10.1175/2009JCLI2890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and R. A. Sobash, 2019: Revisiting sensitivity to horizontal grid spacing in convection-allowing models over the central and eastern United States. Mon. Wea. Rev., 147, 44114435, https://doi.org/10.1175/MWR-D-19-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2009: Next-day convection-allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372, https://doi.org/10.1175/2009MWR2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, K. R. Smith, and M. L. Weisman, 2014: Characterizing and optimizing precipitation forecasts from a convection-permitting ensemble initialized by a mesoscale ensemble Kalman filter. Wea. Forecasting, 29, 12951318, https://doi.org/10.1175/WAF-D-13-00145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, R. A. Sobash, K. R. Fossell, and M. L. Weisman, 2015: NCAR’s experimental real-time convection-allowing ensemble prediction system. Wea. Forecasting, 30, 16451654, https://doi.org/10.1175/WAF-D-15-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, K. R. Fossell, A. Sobash, and M. L. Weisman, 2017: Toward 1-km ensemble forecasts over large domains. Mon. Wea. Rev., 145, 29432969, https://doi.org/10.1175/MWR-D-16-0410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 20772107, https://doi.org/10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., and Coauthors, 2020: A subjective and objective evaluation of model forecasts of Sumatra squall events. Wea. Forecasting, 35, 489506, https://doi.org/10.1175/WAF-D-19-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sunilkumar, K., A. Yatagai, and M. Masuda, 2019: Preliminary evaluation of GPM-IMERG rainfall estimates over three distinct climate zones with APHRODITE. Earth Space Sci., 6, 1321–1335, https://doi.org/10.1029/2018EA000503.

    • Crossref
    • Export Citation
  • Supari, F., E. Salimun, E. Aldrian, A. Sopaheluwakan, and L. Juneng, 2018: ENSO modulation of seasonal rainfall and extremes in Indonesia. Climate Dyn., 51, 25592580, https://doi.org/10.1007/s00382-017-4028-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, H. G., and T. Yasunari, 2008: Decreasing trend in rainfall over Indochina during the late summer monsoon: Impact of tropical cyclones. J. Meteor. Soc. Japan, 86, 429438, https://doi.org/10.2151/jmsj.86.429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., G. J. Huffman, D. T. Bolvin, and E. J. Nelkin, 2019: Diurnal cycle of IMERG V06 precipitation. Geophys. Res. Lett., 46, 13 58413 592, https://doi.org/10.1029/2019GL085395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, M. L., and Z. Duan, 2017: Assessment of GPM and TRMM precipitation products over Singapore. Remote Sens., 9, 720, https://doi.org/10.3390/rs9070720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, M. L., and H. Santo, 2018: Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res., 202, 6376, https://doi.org/10.1016/j.atmosres.2017.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villafuerte, M. Q., and J. Matsumoto, 2015: Significant influences of global mean temperature and ENSO on extreme rainfall in Southeast Asia. J. Climate, 28, 19051919, https://doi.org/10.1175/JCLI-D-14-00531.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, C. L., and T. P. Lane, 2018: Mesoscale variation in diabatic heating around Sumatra, and its modulation with the Madden–Julian oscillation. Mon. Wea. Rev., 146, 25992614, https://doi.org/10.1175/MWR-D-17-0392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, P., P. Knippertz, A. H. Fink, A. Schlueter, and T. Gneiting, 2018: Skill of global raw and postprocessed ensemble predictions of rainfall over northern tropical Africa. Wea. Forecasting, 33, 369388, https://doi.org/10.1175/WAF-D-17-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2017: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev., 10, 14871520, https://doi.org/10.5194/gmd-10-1487-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Chen, J. Du, Y. Zhang, Y. Xia, and G. Deng, 2018: Sensitivity of ensemble forecast verification to model bias. Mon. Wea. Rev., 146, 781796, https://doi.org/10.1175/MWR-D-17-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, E., K. Shelton, M. Reeder, and C. Jakob, 2017: Precipitation associated with convergence lines. J. Climate, 30, 31693183, https://doi.org/10.1175/JCLI-D-16-0535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, 2008: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. Roy. Meteor. Soc., 134, 20932107, https://doi.org/10.1002/qj.333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodhams, B. J., C. E. Birch, J. H. Marsham, C. L. Bain, N. M. Roberts, and D. F. A. Boyd, 2018: What is the added value of a convection-permitting model for forecasting extreme rainfall over tropical East Africa? Mon. Wea. Rev., 146, 27572780, https://doi.org/10.1175/MWR-D-17-0396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., M. Hara, J. Hamada, M. D. Yamanaka, and F. Kimura, 2009: Why a large amount of rain falls over the sea in the vicinity of western Sumatra Island during nighttime. J. Appl. Meteor. Climatol., 48, 13451361, https://doi.org/10.1175/2009JAMC2052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., A. A. Arbain, S. Mori, J. Hamada, M. Hattori, F. Syamsudin, and M. D. Yamanaka, 2013: The effects of an active phase of the Madden–Julian oscillation on the extreme precipitation event over western Java island in January 2013. SOLA, 9, 7983, https://doi.org/10.2151/sola.2013-018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xavier, P., R. Rahmat, W. K. Cheong, and E. Wallace, 2014: Influence of Madden–Julian oscillation on Southeast Asia rainfall extremes: Observations and predictability. Geophys. Res. Lett., 41, 44064412, https://doi.org/10.1002/2014GL060241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamanaka, M. D., 2016: Physical climatology of Indonesian Maritime Continent: An outline to comprehend observational studies. Atmos. Res., 178–179, 231259, https://doi.org/10.1016/j.atmosres.2016.03.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 448 0 0
Full Text Views 509 253 21
PDF Downloads 598 246 14