Winter Surface Air Temperature Prediction over Japan Using Artificial Neural Networks

J. V. Ratnam aApplication Laboratory, VAIG, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by J. V. Ratnam in
Current site
Google Scholar
PubMed
Close
,
Masami Nonaka aApplication Laboratory, VAIG, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Masami Nonaka in
Current site
Google Scholar
PubMed
Close
, and
Swadhin K. Behera aApplication Laboratory, VAIG, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Swadhin K. Behera in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The machine learning technique, namely artificial neural networks (ANN), is used to predict the surface air temperature (SAT) anomalies over Japan in the winter months of December, January, and February for the period 1949/50–2019/20. The predictions are made for the four regions Hokkaido, North, Central, and West of Japan. The inputs to the ANN model are derived from the anomaly correlation coefficients among the SAT anomalies over the regions of Japan and the global SAT and sea surface temperature anomalies. The results are validated using anomaly correlation coefficient (ACC) skill scores with the observation. It is found that the ANN predictions over Hokkaido have higher ACC skill scores compared to the ACC scores over the other three regions. The ANN-predicted SAT anomalies are compared with that of ensemble mean of eight of the North American Multimodel Ensemble (NMME) models besides comparing them with the persistent anomalies. The ANN predictions over all the four regions have higher ACC skill scores compared to the NMME model skill scores in the common period of 1982/83–2018/19. The ANN-predicted SAT anomalies also have higher hit rate and lower false alarm rate compared to the NMME-predicted SAT anomalies. All these indicate that the ANN model is a promising tool for predicting the winter SAT anomalies over Japan.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. V. Ratnam, jvratnam@jamstec.go.jp

Abstract

The machine learning technique, namely artificial neural networks (ANN), is used to predict the surface air temperature (SAT) anomalies over Japan in the winter months of December, January, and February for the period 1949/50–2019/20. The predictions are made for the four regions Hokkaido, North, Central, and West of Japan. The inputs to the ANN model are derived from the anomaly correlation coefficients among the SAT anomalies over the regions of Japan and the global SAT and sea surface temperature anomalies. The results are validated using anomaly correlation coefficient (ACC) skill scores with the observation. It is found that the ANN predictions over Hokkaido have higher ACC skill scores compared to the ACC scores over the other three regions. The ANN-predicted SAT anomalies are compared with that of ensemble mean of eight of the North American Multimodel Ensemble (NMME) models besides comparing them with the persistent anomalies. The ANN predictions over all the four regions have higher ACC skill scores compared to the NMME model skill scores in the common period of 1982/83–2018/19. The ANN-predicted SAT anomalies also have higher hit rate and lower false alarm rate compared to the NMME-predicted SAT anomalies. All these indicate that the ANN model is a promising tool for predicting the winter SAT anomalies over Japan.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. V. Ratnam, jvratnam@jamstec.go.jp
Save
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., N. E. Zimmermann, T. R. McVicar, N. Vergopalan, A. Berg, and E. F. Wood, 2018: Present and future Köppen-Geiger climatic classification maps at 1-km resolution. Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, M. W., 2018: NeuralNetTools: Visualization and analysis tools for neural networks. J. Stat. Software, 85, 120, https://doi.org/10.18637/jss.v085.i11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., H. Van Den Dool, and Q. Zhang, 2014: Predictability and forecast skill in NMME. J. Climate, 27, 58915906, https://doi.org/10.1175/JCLI-D-13-00597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckland, C. E., R. M. Bailey, and D. S. G. Thomas, 2019: Using artificial neural networks to predict future dryland responses to human and climate disturbances. Sci. Rep., 9, 3855, https://doi.org/10.1038/s41598-019-40429-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cifuentes, J., G. Marulanda, A. Bello, and J. Reneses, 2020: Air temperature forecasting using machine learning techniques: A review. Energies, 13, 4215, https://doi.org/10.3390/en13164215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., P. Petersik, E. Hernández-García, and C. López, 2019: The application of Machine Learning Techniques to improve El Niño prediction skill. Front. Phys., 7, 153, https://doi.org/10.3389/fphy.2019.00153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doi, T., S. K. Behera, and T. Yamagata, 2016: Improved seasonal prediction using the SINTEX-F2 coupled model. J. Adv. Model. Earth Syst., 8, 18471867, https://doi.org/10.1002/2016MS000744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doi, T., S. K. Behera, and T. Yamagata, 2020: Wintertime impacts of the 2019 super IOD on East Asia. Geophys. Res. Lett., 47, e2020GL089456, https://doi.org/10.1029/2020GL089456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., J. Meng, J. Ludescher, X. Chen, Y. Ashkenazy, J. Kurths, S. Havlin, and H. J. Schellnhuber, 2021: Statistical physics approaches to the complex Earth system. Phys. Rep., 896, 184, https://doi.org/10.1016/j.physrep.2020.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., and H. van der Dool, 2008: A global monthly land surface air-temperature analysis for 1948-present. J. Geophys. Res., 113, D01103, https://doi.org/10.1029/2007JD008470.

    • Search Google Scholar
    • Export Citation
  • Fritsch, S., F. Guenther, and M. N. Wright, 2019: Neuralnet: Training of neural networks. R package version 1.44.2, accessed 17 June 2021, https://CRAN.R-project.org/package=neuralnet.

    • Crossref
    • Export Citation
  • Garson, G. D., 1991: Interpreting neural network connection weights. Artif. Intell. Expert, 6, 4751, https://doi.org/10.4236/ojas.2014.44023.

    • Search Google Scholar
    • Export Citation
  • Goh, A. T. C., 1995: Back-propagation neural networks for modeling complex systems. Artif. Intell. Eng., 9, 143151, https://doi.org/10.1016/0954-1810(94)00011-S.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ise, T., and Y. Oba, 2019: Forecasting climatic trends using neural networks: An experimental study using global historical data. Front. Robot. AI, 6, 32, https://doi.org/10.3389/frobt.2019.00032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, S. J., and Coauthors, 2018: SEAS5: The new ECMWF seasonal forecasting system. Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-228.

    • Search Google Scholar
    • Export Citation
  • Kashiwao, T., K. Nakayama, S. Ando, M. Lee, and A. Bahadori, 2017: A neural network–based local rainfall prediction system using meteorological data on the internet: A case study using data from the Japan Meteorological Agency. Appl. Soft Comput., 56, 317330, https://doi.org/10.1016/j.asoc.2017.03.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, https://doi.org/10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J., C.-G. Kim, J. E. Lee, N. W. Kin, and H. Kim, 2018: Application of artificial neural networks to rainfall forecasting in the Geum River basin, Korea. Water, 10, 1448, https://doi.org/10.3390/w10101448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maity, R., K. Chanda, R. Dutta, J. V. Ratnam, M. Nonaka, and S. K. Behera, 2020: Contrasting features of hydroclimatic teleconnections and the predictability of seasonal rainfall over east and west Japan. Meteor. Appl., 27, 1, https://doi.org/10.1002/met.1881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and N. E. Graham, 1999: Conditional probabilities, relative operating characteristics, and relative operating levels. Wea. Forecasting, 14, 713725, https://doi.org/10.1175/1520-0434(1999)014<0713:CPROCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCulloch, W. S. and W. Pitts, 1943: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys., 5, 115133, https://doi.org/10.1007/BF02478259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, H., and D. Kanaoka, 2007: Application of support vector regression to temperature forecasting for short-term load forecasting. 2007 Int. Joint Conf. on Neural Networks, IJCNN 2007 Conf. Proc., Orlando, FL, IEEE, 1085–1090, https://doi.org/10.1109/IJCNN.2007.4371109.

    • Crossref
    • Export Citation
  • Murakami, K., T. Hirota, S. Shimoda, and T. Yazaki, 2020: Bias correction for spatially interpolated daily mean air temperature during winter in eastern Hokkaido using multimodal machine learning. Nogyo Kisho, 76, 164173.

    • Search Google Scholar
    • Export Citation
  • Nooteboom, P. D., Q. Y. Feng, C. López, E. Hernández-García, and H. A. Dijkstra, 2018: Using network theory and machine learning to predict El Niño. Earth Syst. Dyn., 9, 969983, https://doi.org/10.5194/esd-9-969-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olden, J. D., M. K. Joy, and R. G. Death, 2004: An accurate comparison of methods for quantifying variable importance in Artificial Neural Networks using simulated data. Ecol. Modell., 178, 389397, https://doi.org/10.1016/j.ecolmodel.2004.03.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, M., R. Maity, J. V. Ratnam, M. Nonaka, and S. K. Behera, 2020: Long-lead prediction of ENSO Modoki index using machine learning algorithms. Sci. Rep., 10, 365, https://doi.org/10.1038/s41598-019-57183-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peel, M. C., B. L. Finlayson, and T. A. Mcmahon, 2007: Updated world map of the Köppen-Geiger climatic classification. Hydrol. Earth Syst. Sci., 11, 16331644, https://doi.org/10.5194/hess-11-1633-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team, 2019: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, accessed 17 June 2021, https://www.R-project.org/.

  • Rasp, S., M. S. Pritchard, and P. Gentine, 2018: Deep learning to represent subgrid processes in climate models. Proc. Natl. Acad. Sci. USA, 115, 96849689, https://doi.org/10.1073/pnas.1810286115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., H. A. Dijkstra, and S. K. Behera, 2020: A machine learning based prediction system for the Indian Ocean Dipole. Sci. Rep., 10, 284, https://doi.org/10.1038/s41598-019-57162-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., T. Doi, Y. Morioka, P. Oettli, M. Nonaka, and S. K. Behera, 2021: Improving predictions of surface air temperature anomalies over Japan by selective ensemble mean technique. Wea. Forecasting, 36, 207217, https://doi.org/10.1175/WAF-D-20-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahai, A. K., M. K. Soman, and V. Satyan, 2000: All India summer monsoon rainfall prediction using an artificial neural network. Climate Dyn., 16, 291302, https://doi.org/10.1007/s003820050328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolbova, V., E. Surovyatkina, B. Bookhagen, and J. Kurths, 2016: Tipping elements of the Indian monsoon: Prediction of onset and withdrawal. Geophys. Res. Lett., 43, 39823990, https://doi.org/10.1002/2016GL068392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, Y., H. Ibayashi, Y. Kaneda, and H. Mineno, 2014: Proposal to sliding window-based support vector regression. Procedia Comput. Sci., 35, 16151624, https://doi.org/10.1016/j.procs.2014.08.245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, Y., and Coauthors, 2017: Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 1 (JMA/MRI-CPS1) for operational seasonal forecasting. Climate Dyn., 48, 313333, https://doi.org/10.1007/s00382-016-3076-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, Y., and Coauthors, 2018: Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 2 (JMA/MRI-CPS2): Atmosphere-land-ocean-sea ice coupled prediction system for operational seasonal forecasting. Climate Dyn., 50, 751765, https://doi.org/10.1007/s00382-017-3638-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsonis, A. A., and K. L. Swanson, 2008: Topology and predictability of El Niño and La Niña networks. Phys. Rev. Lett., 100, 228502, https://doi.org/10.1103/PhysRevLett.100.228502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamasaki, K., A. Gozolchiani, and S. Havlin, 2008: Climate networks around the globe are significantly affected by El Niño. Phys. Rev. Lett., 100, 228501, https://doi.org/10.1103/PhysRevLett.100.228501.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 390 0 0
Full Text Views 254 121 11
PDF Downloads 275 98 15