• Adams, R., 2005: An examination of the 22 May 2004 Hallam, Nebraska tornado. Fourth AMS Student Conf., San Diego, CA, Amer. Meteor. Soc., P1.37, https://ams.confex.com/ams/Annual2005/techprogram/paper_88523.htm.

  • Adlerman, E. J., K. K. Droegemeier, and R. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 20452069, https://doi.org/10.1175/1520-0469(1999)056<2045:ANSOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson-Frey, A. K., and H. Brooks, 2019: Tornado fatalities: An environmental perspective. Wea. Forecasting, 34, 19992015, https://doi.org/10.1175/WAF-D-19-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., 2007: Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005. Wea. Forecasting, 22, 12141228, https://doi.org/10.1175/2007WAF2007004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and T. L. Mote, 2005: Derecho hazards in the United States. Bull. Amer. Meteor. Soc., 86, 15771592, https://doi.org/10.1175/BAMS-86-11-1577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and S. M. Strader, 2016: Recipe for disaster: How the dynamic ingredients of risk and exposure are changing the tornado disaster landscape. Bull. Amer. Meteor. Soc., 97, 767786, https://doi.org/10.1175/BAMS-D-15-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. J. Krmenec, and R. Schwantes, 2008: Vulnerability due to nocturnal tornadoes. Wea. Forecasting, 23, 795807, https://doi.org/10.1175/2008WAF2222132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beatty, K., E. N. Rasmussen, J. M. Straka, and L. R. Lemon, 2009: The supercell spectrum. Part II: A semi-objective method for radar classification of supercell type. Electron. J. Severe Storms Meteor., 4 (1), https://ejssm.org/ojs/index.php/ejssm/article/viewArticle/45.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and et al. , 2004: An hourly assimilation forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentley, A. M., L. F. Bosart, and D. Keyser, 2019: A climatology of extratropical cyclones leading to extreme weather events over central and eastern North America. Mon. Wea. Rev., 147, 14711490, https://doi.org/10.1175/MWR-D-18-0453.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 2009: The formation and early evolution of the Greensburg, Kansas, tornadic supercell on 4 May 2007. Wea. Forecasting, 24, 899920, https://doi.org/10.1175/2009WAF2222206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., J. C. Snyder, and J. B. Houser, 2015: A multiscale overview of the El Reno, Oklahoma, tornadic supercell of 31 May 2013. Wea. Forecasting, 30, 525552, https://doi.org/10.1175/WAF-D-14-00152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bothwell, P. D., J. A. Hart, and R. L. Thompson, 2002: An integrated three-dimensional objective analysis scheme in use at the Storm Prediction Center. 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., JP3.1, https://ams.confex.com/ams/pdfpapers/47482.pdf.

  • Brooks, H. E., 2004: On the relationship of tornado path length and width to intensity. Wea. Forecasting, 19, 310319, https://doi.org/10.1175/1520-0434(2004)019<0310:OTROTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and R. B. Wilhelmson, 1993: Hodograph curvature and updraft intensity in numerically modeled supercells. J. Atmos. Sci., 50, 18241833, https://doi.org/10.1175/1520-0469(1993)050<1824:HCAUII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and R. Davies-Jones, 1993: Environmental helicity and the maintenance and evolution of low-level mesocyclones. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 97–104.

    • Crossref
    • Export Citation
  • Brooks, H. E., R. B. Wilhelmson, and R. B. Wilhelmson, 1994a: The role of midtropospheric winds in the evolution and maintenance of low-level mesocyclones. Mon. Wea. Rev., 122, 126136, https://doi.org/10.1175/1520-0493(1994)122<0126:TROMWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., R. B. Wilhelmson, and J. Cooper, 1994b: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9, 606618, https://doi.org/10.1175/1520-0434(1994)009<0606:OTEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, M., and C. J. Nowotarski, 2019: The influence of lifting condensation level on low-level outflow and rotation in simulated supercell thunderstorms. J. Atmos. Sci., 76, 13491372, https://doi.org/10.1175/JAS-D-18-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., and R. J. Meitin, 1994: Evolution and morphology of two splitting thunderstorms with dominant left-moving members. Mon. Wea. Rev., 122, 20522067, https://doi.org/10.1175/1520-0493(1994)122<2052:EAMOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. W., and J. W. Stoppkotte, 2007: Documentation of a rare tornadic left-moving supercell. Electron. J. Severe Storms Meteor., 2 (2), https://ejssm.org/ojs/index.php/ejssm/article/viewArticle/14/17.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. W., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. W., M. R. Hjelmfelt, and P. L. Smith, 2006a: An observational examination of long-lived supercells. Part I: Characteristics, evolution, and demise. Wea. Forecasting, 21, 673688, https://doi.org/10.1175/WAF949.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. W., J. S. Johnson, L. J. Czepyha, J. M. Grzywacz, B. A. Klimowski, and M. R. Hjelmfelt, 2006b: An observational examination of long-lived supercells. Part II: Environmental conditions and forecasting. Wea. Forecasting, 21, 689714, https://doi.org/10.1175/WAF952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D., and et al. , 2014: 20 May 2013 Moore, Oklahoma, Tornado: Damage survey and analysis. Wea. Forecasting, 29, 12291237, https://doi.org/10.1175/WAF-D-14-00039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149180, https://doi.org/10.1175/MWR-D-16-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coleman, T. A., and P. G. Dixon, 2014: An objective analysis of tornado risk in the United States. Wea. Forecasting, 29, 366376, https://doi.org/10.1175/WAF-D-13-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and M. D. Parker, 2020: Insights into supercells and their environments from three decades of targeted radiosonde observations. Mon. Wea. Rev., 148, 48934915, https://doi.org/10.1175/MWR-D-20-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., S. J. Weiss, J. S. Kain, S. J. Corfidi, R. M. Rabin, and J. J. Levit, 2010: Revisiting the 3–4 April 1974 super outbreak of tornadoes. Wea. Forecasting, 25, 465510, https://doi.org/10.1175/2009WAF2222297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darkow, G. L., 1969: An analysis of over sixty tornado proximity soundings. Preprints, Sixth Conf. on Severe Local Storms, Chicago, IL, Amer. Meteor. Soc., 218–221.

  • Dixon, P. G., A. E. Mercer, J. Choi, and J. S. Allen, 2011: Tornado risk analysis: Is Dixie Alley an extension of Tornado Alley? Bull. Amer. Meteor. Soc., 92, 433441, https://doi.org/10.1175/2010BAMS3102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esterheld, J. M., and D. J. Giuliano, 2008: Discriminating between tornadic and non-tornadic supercells: A new hodograph technique. Electron. J. Severe Storms Meteor., 3 (2), https://ejssm.org/ojs/index.php/ejssm/article/viewArticle/33.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 15111534, https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garner, J. M., 2007: A preliminary study on environmental parameters related to tornado path length. Electron. J. Oper. Meteor., 2007-EJ5, http://nwafiles.nwas.org/ej/pdf/2007-EJ5.pdf.

    • Search Google Scholar
    • Export Citation
  • Henry, A. J., 1925: The tornadoes of March 18, 1925. Mon. Wea. Rev., 53, 141145, https://doi.org/10.1175/1520-0493(1925)53<141:TTOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irish, J. L., D. T. Resio, and J. J. Ratcliff, 2008: The influence of storm size on hurricane surge. J. Phys. Oceanogr., 38, 20032013, https://doi.org/10.1175/2008JPO3727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., J. M. Davies, and P. W. Leftwich, 1993: Some wind and instability parameters associated with strong and violent tornadoes. Part II: Variations in the combinations of wind and instability parameters. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 583–590.

    • Crossref
    • Export Citation
  • Johns, R. H., D. W. Burgess, C. A. Doswell III, M. S. Gilmore, J. A. Hart, and S. F. Piltz, 2013: The 1925 Tri-State tornado damage path and associated storm system. Electron. J. Severe Storms Meteor., 8 (2), https://ejssm.org/ojs/index.php/ejssm/article/viewArticle/109–.

    • Search Google Scholar
    • Export Citation
  • Karstens, C. D., T. M. Samaras, B. D. Lee, W. A. Gallus Jr., and C. A. Finley, 2010: Near-ground pressure and wind measurements in tornadoes. Mon. Wea. Rev., 138, 25702588, https://doi.org/10.1175/2010MWR3201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., P. L. Heinselman, and M. Austin, 2015: 31 May 2013 El Reno tornadoes: Advantages of rapid-scan phased-array radar data from a warning forecaster’s perspective. Wea. Forecasting, 30, 933956, https://doi.org/10.1175/WAF-D-14-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanicci, J. M., and T. T. Warner, 1991: A synoptic climatology of the elevated mixed-layer inversion over the southern Great Plains in spring: Part I: Structure, dynamics, and seasonal evolution. Wea. Forecasting, 6, 181197, https://doi.org/10.1175/1520-0434(1991)006<0181:ASCOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. D., B. F. Jewett, and R. B. Wilhelmson, 2006: The 19 April 1996 Illinois tornado outbreak: Cell mergers and associated tornado incidence. Wea. Forecasting, 21, 449464, https://doi.org/10.1175/WAF943.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. D., C. A. Finley, and C. D. Karstens, 2012: The Bowdle, South Dakota, cyclic tornadic supercell of 22 May 2010: Surface analysis of rear-flank downdraft evolution and multiple internal surges. Mon. Wea. Rev., 140, 34193441, https://doi.org/10.1175/MWR-D-11-00351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., R. J. Donaldson Jr., D. W. Burgess, and R. A. Brown, 1977: Doppler radar application to severe thunderstorm study and potential real-time warning. Bull. Amer. Meteor. Soc., 58, 11871193, https://doi.org/10.1175/1520-0477(1977)058<1187:DRATST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., M. S. Gilmore, C. A. Doswell III, R. H. Johns, C. A. Crisp, D. W. Burgess, J. A. Hart, and S. F. Piltz, 2013: Meteorological analyses of the Tri-State tornado event of March 1925. Electron. J. Severe Storms Meteor., 8 (1), https://ejssm.org/ojs/index.php/ejssm/article/viewFile/114/88.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., and D. R. Whitney, 1947: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat., 18, 5060, https://doi.org/10.1214/aoms/1177730491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. N. Rasmussen, and J. M. Straka, 1998: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13, 852859, https://doi.org/10.1175/1520-0434(1998)013<0852:TOOTIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., and M. L. Weisman, 2001: The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129, 664687, https://doi.org/10.1175/1520-0493(2001)129<0664:TSOSSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mead, C. M., and R. L. Thompson, 2011: Environmental characteristics associated with nocturnal significant-tornado events in the central and southern Great Plains. Electron. J. Severe Storms Meteor., 6 (6), https://www.ejssm.org/ojs/index.php/ejssm/issue/view/31.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, M. J., and J. T. Allen, 2019: On the moisture origins of tornadic thunderstorms. J. Climate, 32, 43214346, https://doi.org/10.1175/JCLI-D-18-0784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moller, A. R., C. A. Doswell III, M. P. Foster, and G. R. Woodall, 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9, 327347, https://doi.org/10.1175/1520-0434(1994)009<0327:TOROST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murdzek, S. S., P. M. Markowski, Y. P. Richardson, and R. L. Tanamachi, 2020: Processes preventing the development of a significant tornado in a Colorado supercell on 26 May 2010. Mon. Wea. Rev., 148, 17531778, https://doi.org/10.1175/MWR-D-19-0288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Needham, H. F., and B. D. Keim, 2014: Correlating storm surge heights with tropical cyclone winds at and before landfall. Earth Interact., 18, https://doi.org/10.1175/2013EI000527.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orf, L. R., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 4568, https://doi.org/10.1175/BAMS-D-15-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and J. M. Straka, 1998: Variations in supercell morphology. Part I: Observations of the role of upper-level storm-relative flow. Mon. Wea. Rev., 126, 24062421, https://doi.org/10.1175/1520-0493(1998)126<2406:VISMPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, R. Davies-Jones, C. A. Doswell III, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc., 75, 9951006, https://doi.org/10.1175/1520-0477(1994)075<0995:VOTOOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., S. Richardson, J. M. Straka, P. M. Markowski, and D. O. Blanchard, 2000: The association of significant tornadoes with a baroclinic boundary on 2 June 1995. Mon. Wea. Rev., 128, 174191, https://doi.org/10.1175/1520-0493(2000)128<0174:TAOSTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, R. S., and A. R. Dean, 2008: A comprehensive 5-year severe storm environment climatology for the continental United States. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 16A.4, https://ams.confex.com/ams/pdfpapers/141748.pdf.

  • Skinner, P. S., C. C. Weiss, M. M. French, H. B. Bluestein, P. M. Markowski, and Y. P. Richardson, 2014: VORTEX2 observations of a low-level mesocyclone with multiple internal rear-flank downdraft momentum surges in the 18 May 2010 Dumas, Texas, supercell. Mon. Wea. Rev., 142, 29352960, https://doi.org/10.1175/MWR-D-13-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, A. R. Dean, and P. T. Marsh, 2015: Diagnosing the conditional probability of tornado damage rating using environmental and radar attributes. Wea. Forecasting, 30, 914932, https://doi.org/10.1175/WAF-D-14-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snook, N., and M. Xue, 2008: Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms. Geophys. Res. Lett., 35, L24803, https://doi.org/10.1029/2008GL035866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., and H. B. Bluestein, 2014: Some considerations for the use of high-resolution mobile radar data in tornado intensity determination. Wea. Forecasting, 29, 799827, https://doi.org/10.1175/WAF-D-14-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speheger, D. A., and R. D. Smith, 2006: On the imprecision of radar signature locations and storm path forecasts. Natl. Wea. Dig., 30, 310, http://nwafiles.nwas.org/digest/papers/2006/Vol30No1/Pg3-Speheger.pdf.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and R. Edwards, 2000: An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea. Forecasting, 15, 682699, https://doi.org/10.1175/1520-0434(2000)015<0682:AOOECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the rapid update cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, https://doi.org/10.1175/WAF969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, A. R. Dean, and P. T. Marsh, 2013: Spatial distributions of tornadic near-storm environments by convective mode. Electron. J. Severe Storms Meteor., 8 (5), http:www.ejssm.org/ojs/index.php/ejssm/issue/view/47.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and et al. , 2017: Tornado damage rating probabilities derived from WSR-88D. Wea. Forecasting, 32, 15091528, https://doi.org/10.1175/WAF-D-17-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., G. R. Marion, and S. W. Nesbitt, 2017: The regulation of tornado intensity by updraft width. J. Atmos. Sci., 74, 41994211, https://doi.org/10.1175/JAS-D-16-0331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1983: The West Bend, Wisconsin storm of 4 April 1981: A problem in operational meteorology. J. Climate Appl. Meteor., 22, 181189, https://doi.org/10.1175/1520-0450(1983)022<0181:TWBWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498, https://doi.org/10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and R. A. Brown, 1997: Effects of radar sampling on single-Doppler velocity signatures of mesocyclones and tornadoes. Wea. Forecasting, 12, 928938, https://doi.org/10.1175/1520-0434(1997)012<0928:EORSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and K. Kosiba, 2013: Finescale radar observations of tornado and mesocyclone structures. Wea. Forecasting, 28, 11571174, https://doi.org/10.1175/WAF-D-12-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The second verification of the origins of rotation in tornadoes experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, https://doi.org/10.1175/BAMS-D-11-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Robinson, and T. Marshall, 2014: The role of multiple-vortex tornado structure in causing storm researcher fatalities. Bull. Amer. Meteor. Soc., 95, 3145, https://doi.org/10.1175/BAMS-D-13-00221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 123 123 47
Full Text Views 54 54 21
PDF Downloads 69 69 29

An Environmental Study on Tornado Pathlength, Longevity, and Width

View More View Less
  • 1 a NOAA/National Weather Service, Eureka, California
  • | 2 b NOAA/National Weather Service, Lubbock, Texas
  • | 3 c NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A dataset maintained by the Storm Prediction Center (SPC) of 6300 tornado events from 2009 to 2015, consisting of radar-identified convective modes and near-storm environmental information obtained from Rapid Update Cycle and Rapid Refresh model analysis grids, has been augmented with additional radar information related to the low-level mesocyclones associated with tornado longevity, pathlength, and width. All EF2–EF5 tornadoes [as measured on the enhanced Fujita (EF) scale], in addition to randomly selected EF0–EF1 tornadoes, were extracted from the SPC dataset, which yielded 1268 events for inclusion in the current study. Analysis of those data revealed similar values of the effective-layer significant tornado parameter for the longest-lived (60+ min) tornadic circulations, longest-tracked (≥68 km) tornadoes, and widest tornadoes (≥1.2 km). However, the widest tornadoes occurring west of −94° longitude were associated with larger mean-layer convective available potential energy, storm-top divergence, and low-level rotational velocity. Furthermore, wide tornadoes occurred when low-level winds were out of the southeast, resulting in large low-level hodograph curvature and near-surface horizontal vorticity that was more purely streamwise when compared with long-lived and long-tracked events. On the other hand, tornado pathlength and longevity were maximized with eastward-migrating synoptic-scale cyclones associated with strong southwesterly wind profiles through much of the troposphere, fast storm motions, large values of bulk wind difference and storm-relative helicity, and lower buoyancy.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jonathan M. Garner, jonathan.garner@noaa.gov

Abstract

A dataset maintained by the Storm Prediction Center (SPC) of 6300 tornado events from 2009 to 2015, consisting of radar-identified convective modes and near-storm environmental information obtained from Rapid Update Cycle and Rapid Refresh model analysis grids, has been augmented with additional radar information related to the low-level mesocyclones associated with tornado longevity, pathlength, and width. All EF2–EF5 tornadoes [as measured on the enhanced Fujita (EF) scale], in addition to randomly selected EF0–EF1 tornadoes, were extracted from the SPC dataset, which yielded 1268 events for inclusion in the current study. Analysis of those data revealed similar values of the effective-layer significant tornado parameter for the longest-lived (60+ min) tornadic circulations, longest-tracked (≥68 km) tornadoes, and widest tornadoes (≥1.2 km). However, the widest tornadoes occurring west of −94° longitude were associated with larger mean-layer convective available potential energy, storm-top divergence, and low-level rotational velocity. Furthermore, wide tornadoes occurred when low-level winds were out of the southeast, resulting in large low-level hodograph curvature and near-surface horizontal vorticity that was more purely streamwise when compared with long-lived and long-tracked events. On the other hand, tornado pathlength and longevity were maximized with eastward-migrating synoptic-scale cyclones associated with strong southwesterly wind profiles through much of the troposphere, fast storm motions, large values of bulk wind difference and storm-relative helicity, and lower buoyancy.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jonathan M. Garner, jonathan.garner@noaa.gov
Save