• Amiot, C. G., L. D. Carey, W. P. Roeder, T. M. McNamara, and R. J. Blakeslee, 2019: C-band dual-polarization radar signatures of wet downbursts around Cape Canaveral, Florida. Wea. Forecasting, 34, 103131, https://doi.org/10.1175/WAF-D-18-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., and R. M. Wakimoto, 1991: Wet microburst activity over the southeastern United States: Implications for forecasting. Wea. Forecasting, 6, 470482, https://doi.org/10.1175/1520-0434(1991)006<0470:WMAOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auer, A. H., Jr., 1972: Distribution of graupel and hail with size. Mon. Wea. Rev., 100, 325328, https://doi.org/10.1175/1520-0493-100-05-0325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Augros, C., O. Caumont, V. Ducrocq, N. Gaussiat, and P. Tabary, 2016: Comparisons between S-, C-, and X-band polarimetric radar observations and convective-scale simulations of the HyMeX first special observing period. Quart. J. Roy. Meteor. Soc., 142, 347362, https://doi.org/10.1002/qj.2572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., T. A. Seliga, and K. Aydin, 1984: Hail detection with a differential reflectivity radar. Science, 225, 11451147, https://doi.org/10.1126/science.225.4667.1145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brock, F. V., K. C. Crawford, R. L. Elliot, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519, https://doi.org/10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlin, J. T., and A. V. Ryzhkov, 2019: Estimation of melting-layer cooling rate from dual-polarization radar: Spectral bin model simulations. J. Appl. Meteor. Climatol., 58, 14851508, https://doi.org/10.1175/JAMC-D-18-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlin, J. T., A. V. Ryzhkov, J. C. Snyder, and A. Khain, 2016: Hydrometeor mixing ratio retrievals for storm-scale radar data assimilation: Utility of current relations and potential benefits of polarimetry. Mon. Wea. Rev., 144, 29813001, https://doi.org/10.1175/MWR-D-15-0423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, A. G. Detwiler, and J. M. Wilkinson, 2019: Normalized hail particle size distributions from the T-28 storm-penetrating aircraft. J. Appl. Meteor. Climatol., 58, 231245, https://doi.org/10.1175/JAMC-D-18-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forsyth, D. E., and et al. , 2005: The National Weather Radar Testbed (phased array). 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 12R.3, https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_96377.htm.

  • Frugis, B. J., 2018: Using specific differential phase to predict significant severe thunderstorm wind damage across the northeastern United States. Twenty Ninth Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc, 21, https://ams.confex.com/ams/29SLS/meetingapp.cgi/Paper/348206.

  • Frugis, B. J., 2020: The use of collapsing specific differential phase columns to predict significant severe thunderstorm wind damage across the northeastern United States. Eastern Region Tech. Attachment 2020-04, 16 pp., https://www.weather.gov/media/erh/ta2020-04.pdf.

  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 15111534, https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., and H. R. Byers, 1977: Spearhead echo and downburst in the crash of an airliner. Mon. Wea. Rev., 105, 129146, https://doi.org/10.1175/1520-0493(1977)105<0129:SEADIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., and R. M. Wakimoto, 1981: Five scales of airflow associated with a series of downbursts on 16 July 1980. Mon. Wea. Rev., 109, 14381456, https://doi.org/10.1175/1520-0493(1981)109<1438:FSOAAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., and A. V. Ryzhkov, 2006: Validation of polarimetric hail detection. Wea. Forecasting, 21, 839850, https://doi.org/10.1175/WAF956.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. L. Priegnitz, K. L. Manross, T. M. Smith, and R. W. Adams, 2008: Rapid sampling of severe storms by the National Weather Radar Testbed Phased Array Radar. Wea. Forecasting, 23, 808824, https://doi.org/10.1175/2008WAF2007071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. V., V. N. Bringi, and L. D. Carey, 1998: CSU–CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37, 749775, https://doi.org/10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaminger, M. A., 1988: A preliminary study of precursors to Huntsville microbursts. Lincoln Laboratory Project Rep. ATC-153, 28 pp., https://apps.dtic.mil/sti/pdfs/ADA200914.pdf.

  • Jung, Y., M. Xue, and M. Tong, 2012: Ensemble Kalman filter analyses of the 29–30 May 2004 Oklahoma tornadic thunderstorm using one- and two-moment bulk microphysics schemes, with verification against polarimetric data. Mon. Wea. Rev., 140, 14571475, https://doi.org/10.1175/MWR-D-11-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and R. M. Wakimoto, 1990: Kinematic, dynamic, and thermodynamic analysis of a weakly sheared severe thunderstorm over northern Alabama. Mon. Wea. Rev., 119, 262297, https://doi.org/10.1175/1520-0493(1991)119<0262:KDATAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Y. P. Richardson, T. Meyer, K. A. Kosiba, and J. Wurman, 2018: Resonance scattering effects in wet hail observed with a dual-X-band frequency, dual-polarization Doppler on Wheels radar. J. Appl. Meteor. Climatol., 57, 27132731, https://doi.org/10.1175/JAMC-D-17-0362.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Z. J. Lebo, and A. M. Ward, 2019: Storms producing large accumulations of small hail. J. Appl. Meteor. Climatol., 58, 341364, https://doi.org/10.1175/JAMC-D-18-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., P. L. Heinselman, and T. J. Schuur, 2016: Rapid-update radar observations of downbursts occurring within an intense multicell thunderstorm on 14 June 2011. Wea. Forecasting, 31, 827851, https://doi.org/10.1175/WAF-D-15-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaDue, D. S., P. L. Heinselman, and J. F. Newman, 2010: Strengths and limitations of current radar systems for two stakeholder groups in the southern plains. Bull. Amer. Meteor. Soc., 91, 899910, https://doi.org/10.1175/2009BAMS2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagerquist, R., A. McGovern, and T. Smith, 2017: Machine learning for real-time prediction of damaging straight-line convective wind. Wea. Forecasting, 32, 21752193, https://doi.org/10.1175/WAF-D-17-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, J. R., J. S. Kain, N. Yussouf, D. C. Dowell, D. M. Wheatley, K. H. Knopfmeier, and T. A. Jones, 2018: Advancing from convective-allowing NWP to Warn-on-Forecast: Evidence of progress. Wea. Forecasting, 33, 599607, https://doi.org/10.1175/WAF-D-17-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loney, M. L., D. S. Zrnić, J. M. Straka, and A. V. Ryzhkov, 2002: Enhanced polarimetric radar signatures above the melting layer in a supercell storm. J. Appl. Meteor., 41, 11791194, https://doi.org/10.1175/1520-0450(2002)041<1179:EPRSAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahale, V. N., G. Zhang, and M. Xue, 2016: Characterization of the 14 June 2011 Norman, Oklahoma downburst through dual-polarization radar observations and hydrometeor classification. J. Appl. Meteor. Climatol., 55, 26352655, https://doi.org/10.1175/JAMC-D-16-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNulty, R. P., 1991: Downbursts from innocuous clouds: An example. Wea. Forecasting, 6, 148154, https://doi.org/10.1175/1520-0434(1991)006<0148:DFICAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and et al. , 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301321, https://doi.org/10.1175/JTECH1976.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, B. L., L. D. Carey, C. G. Amiot, R. M. Mecikalski, W. P. Roeder, T. M. McNamara, and R. J. Blakeslee, 2019: A random forest method to forecast downbursts based on dual-polarization radar signatures. Remote Sens., 11, 826, https://doi.org/10.3390/rs11070826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, P. W., and T. L. Mote, 2018: Characterizing severe weather potential in synoptically weakly forced thunderstorm environments. Nat. Hazards Earth Syst. Sci., 18, 12611277, https://doi.org/10.5194/nhess-18-1261-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proctor, F. H., 1988: Numerical simulations of an isolated microburst. Part I: Dynamics and structure. J. Atmos. Sci., 45, 31373160, https://doi.org/10.1175/1520-0469(1988)045<3137:NSOAIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proctor, F. H., 1989: Numerical simulations of an isolated microburst. Part II: Sensitivity experiments. J. Atmos. Sci., 46, 21432165, https://doi.org/10.1175/1520-0469(1989)046<2143:NSOAIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763, https://doi.org/10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., and J. W. Wilson, 1989: A proposed microburst nowcasting procedure using single-Doppler radar. J. Appl. Meteor., 28, 285303, https://doi.org/10.1175/1520-0450(1989)028<0285:APMNPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, V. M. Melnikov, and T. J. Schuur, 2005: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155, https://doi.org/10.1175/JTECH1772.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and A. P. Khain, 2013: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, https://doi.org/10.1175/JAMC-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scharfenberg, K. A., 2003: Polarimetric radar signatures in microburst-producing thunderstorms. 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 8B.4, https://ams.confex.com/ams/pdfpapers/64413.pdf.

  • Seliga, T. A., and V. N. Bringi, 1978: Differential reflectivity and differential phase shift: Applications in radar meteorology. Radio Sci., 13, 271275, https://doi.org/10.1029/RS013i002p00271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., K. L. Elmore, and S. A. Dulin, 2004: A damaging downburst prediction and detection algorithm for the WSR-88D. Wea. Forecasting, 19, 240250, https://doi.org/10.1175/1520-0434(2004)019<0240:ADDPAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, D. T. Dawson II, and Y. Jung, 2017: Simulations of polarimetric, X-band radar signatures in supercells. Part II: ZDR columns and rings and KDP columns. J. Appl. Meteor. Climatol., 56, 20012026, https://doi.org/10.1175/JAMC-D-16-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1985: A simple model of evaporatively driven downdraft: Application to microburst downdraft. J. Atmos. Sci., 42, 10041023, https://doi.org/10.1175/1520-0469(1985)042<1004:ASMOED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44, 17521774, https://doi.org/10.1175/1520-0469(1987)044<1752:AMOIDD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and et al. , 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and J. R. Anderson, 1993: Numerical simulations of microburst-producing storms: Some results from storms observed during COHMEX. J. Atmos. Sci., 50, 13291348, https://doi.org/10.1175/1520-0469(1993)050<1329:NSOMPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. M. Wheatley, N. T. Atkins, R. W. Przybylinski, and R. Wolf, 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415, https://doi.org/10.1175/WAF925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1985: Forecasting dry microburst activity over the high plains. Mon. Wea. Rev., 113, 11311143, https://doi.org/10.1175/1520-0493(1985)113<1131:FDMAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and V. N. Bringi, 1988: Dual-Polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST project. Mon. Wea. Rev., 116, 15211539, https://doi.org/10.1175/1520-0493(1988)116<1521:DPOOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., R. D. Roberts, C. Kessinger, and J. McCarthy, 1984: Microburst wind structure and evaluation of Doppler radar for airport wind shear detection. J. Climate Appl. Meteor., 23, 898915, https://doi.org/10.1175/1520-0450(1984)023<0898:MWSAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and et al. , 2007: Agile-beam phased array radar for weather observations. Bull. Amer. Meteor. Soc., 88, 17531766, https://doi.org/10.1175/BAMS-88-11-1753.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 269 269 191
Full Text Views 104 104 71
PDF Downloads 127 127 99

Using KDP Cores as a Downburst Precursor Signature

View More View Less
  • 1 a Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma
  • | 2 b NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 3 c University of Oklahoma, Norman, Oklahoma
  • | 4 d NOAA/National Weather Service, Norman, Oklahoma
  • | 5 e NOAA/NWS/NCEP Storm Prediction Center, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Decades of research have investigated processes that contribute to downburst development, as well as identified precursor radar signatures that can accompany these events. These advancements have increased downburst predictability, but downbursts still pose a significant forecast challenge, especially in low-shear environments that produce short-lived single and multicell thunderstorms. Additional information provided by dual-polarization radar data may prove useful in anticipating downburst development. One such radar signature is the KDP core (where KDP is the specific differential phase), which can indicate processes such as melting and precipitation loading that increase negative buoyancy and can result in downburst development. Therefore, KDP cores associated with 81 different downbursts across 10 states are examined to explore if this signature could provide forecasters with a reliable and useable downburst precursor signature. The KDP core characteristics near the environmental melting layer, vertical gradients of KDP, and environmental conditions were quantified to identify any differences between downbursts of varying intensities. The analysis shows that 1) KDP cores near the environmental melting layer are a reliable signal that a downburst will develop; 2) while using KDP cores to anticipate an impending downburst’s intensity is challenging, larger KDP near the melting layer and larger vertical gradients of KDP are more commonly associated with strong downbursts than weak ones; 3) downbursts occurring in environments with less favorable conditions for downbursts are associated with higher magnitude KDP cores, and 4) KDP cores evolve relatively slowly (typically longer than 15 min), which makes them easily observable with the 5-min volumetric updates currently provided by operational radars.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Charles M. Kuster, Charles.Kuster@noaa.gov

Abstract

Decades of research have investigated processes that contribute to downburst development, as well as identified precursor radar signatures that can accompany these events. These advancements have increased downburst predictability, but downbursts still pose a significant forecast challenge, especially in low-shear environments that produce short-lived single and multicell thunderstorms. Additional information provided by dual-polarization radar data may prove useful in anticipating downburst development. One such radar signature is the KDP core (where KDP is the specific differential phase), which can indicate processes such as melting and precipitation loading that increase negative buoyancy and can result in downburst development. Therefore, KDP cores associated with 81 different downbursts across 10 states are examined to explore if this signature could provide forecasters with a reliable and useable downburst precursor signature. The KDP core characteristics near the environmental melting layer, vertical gradients of KDP, and environmental conditions were quantified to identify any differences between downbursts of varying intensities. The analysis shows that 1) KDP cores near the environmental melting layer are a reliable signal that a downburst will develop; 2) while using KDP cores to anticipate an impending downburst’s intensity is challenging, larger KDP near the melting layer and larger vertical gradients of KDP are more commonly associated with strong downbursts than weak ones; 3) downbursts occurring in environments with less favorable conditions for downbursts are associated with higher magnitude KDP cores, and 4) KDP cores evolve relatively slowly (typically longer than 15 min), which makes them easily observable with the 5-min volumetric updates currently provided by operational radars.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Charles M. Kuster, Charles.Kuster@noaa.gov

Supplementary Materials

    • Supplemental Materials (ZIP 2.47 MB)
Save