Investigation of Machine Learning Using Satellite-Based Advanced Dvorak Technique Analysis Parameters to Estimate Tropical Cyclone Intensity

Timothy Olander aCooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Timothy Olander in
Current site
Google Scholar
PubMed
Close
,
Anthony Wimmers aCooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Anthony Wimmers in
Current site
Google Scholar
PubMed
Close
,
Christopher Velden aCooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Christopher Velden in
Current site
Google Scholar
PubMed
Close
, and
James P. Kossin bThe Climate Service, Durham, North Carolina
aCooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by James P. Kossin in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Several simple and computationally inexpensive machine learning models are explored that can use advanced Dvorak technique (ADT)-retrieved features of tropical cyclones (TCs) from satellite imagery to provide improved maximum sustained surface wind speed (MSW) estimates. ADT (version 9.0) TC analysis parameters and operational TC forecast center best track datasets from 2005 to 2016 are used to train and validate the various models over all TC basins globally and select the best among them. Two independent test sets of TC cases from 2017 to 2018 are used to evaluate the intensity estimates produced by the final selected model called the “artificial intelligence (AI)” enhanced advanced Dvorak technique (AiDT). The 2017–18 MSW results demonstrate a global RMSE of 7.7 and 8.2 kt (1 kt ≈ 0.51 m s−1), respectively. Basin-specific MSW RMSEs of 8.4, 6.8, 7.3, 8.0, and 7.5 kt were obtained with the 2017 dataset in the North Atlantic, east/central Pacific, northwest Pacific, South Pacific/south Indian, and north Indian Ocean basins, respectively, with MSW RMSE values of 8.9, 6.7, 7.1, 10.4, and 7.7 obtained with the 2018 dataset. These represent a 30% and 23% improvement over the corresponding ADT RMSE for the 2017–18 datasets, respectively, with the AiDT error reduction significant to 99% in both sets. The AiDT model represents a notable improvement over the ADT performance and also compares favorably to more computationally expensive and complex machine learning models that interrogate satellite images directly while still preserving the operational familiarity of the ADT.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 22 November 2021 to include the complete affiliations of coauthor Kossin.

Corresponding author: Timothy Olander, timo@ssec.wisc.edu

Abstract

Several simple and computationally inexpensive machine learning models are explored that can use advanced Dvorak technique (ADT)-retrieved features of tropical cyclones (TCs) from satellite imagery to provide improved maximum sustained surface wind speed (MSW) estimates. ADT (version 9.0) TC analysis parameters and operational TC forecast center best track datasets from 2005 to 2016 are used to train and validate the various models over all TC basins globally and select the best among them. Two independent test sets of TC cases from 2017 to 2018 are used to evaluate the intensity estimates produced by the final selected model called the “artificial intelligence (AI)” enhanced advanced Dvorak technique (AiDT). The 2017–18 MSW results demonstrate a global RMSE of 7.7 and 8.2 kt (1 kt ≈ 0.51 m s−1), respectively. Basin-specific MSW RMSEs of 8.4, 6.8, 7.3, 8.0, and 7.5 kt were obtained with the 2017 dataset in the North Atlantic, east/central Pacific, northwest Pacific, South Pacific/south Indian, and north Indian Ocean basins, respectively, with MSW RMSE values of 8.9, 6.7, 7.1, 10.4, and 7.7 obtained with the 2018 dataset. These represent a 30% and 23% improvement over the corresponding ADT RMSE for the 2017–18 datasets, respectively, with the AiDT error reduction significant to 99% in both sets. The AiDT model represents a notable improvement over the ADT performance and also compares favorably to more computationally expensive and complex machine learning models that interrogate satellite images directly while still preserving the operational familiarity of the ADT.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 22 November 2021 to include the complete affiliations of coauthor Kossin.

Corresponding author: Timothy Olander, timo@ssec.wisc.edu
Save
  • Abadi, M., and Coauthors, 2016: TensorFlow: A system for large-scale machine learning. Proc. 12th USENIX Conf. on Operating Systems Design and Implementation (OSDI’16), Savannah, GA, USENIX, 265–283, https://dl.acm.org/doi/10.5555/3026877.3026899.

  • Chen, B., B. Chen, H. Lin, and R. L. Elsberry, 2019: Estimating tropical cyclone intensity by satellite imagery utilizing convolutional neural networks. Wea. Forecasting, 34, 447465, https://doi.org/10.1175/WAF-D-18-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chollet, F., 2015: Keras. GitHub, accessed 15 December 2020, https://github.com/fchollet/keras.

  • Combinido, J. S., J. R. Mendoza, and J. Aborot, 2018: A convolutional neural network approach for estimating tropical cyclone intensity using satellite-based infrared images. 24th Int. Conf. on Pattern Recognition (ICPR), Beijing, China, Institute of Electrical and Electronics Engineers, 1474–1480, https://doi.org/10.1109/ICPR.2018.8545593.

    • Crossref
    • Export Citation
  • Courtney, J., A. Burton, C. Velden, T. Olander, L. Ritchie, C. Stark, and L. Majewski, 2020: Towards an objective historical tropical cyclone dataset for the Australian region. Trop. Cyclone Res. Rev., 9, 2336, https://doi.org/10.1016/j.tcrr.2020.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dvorak, V., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420430, https://doi.org/10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dvorak, V., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, 47 pp., https://satepsanone.nesdis.noaa.gov/pub/Publications/Tropical/Dvorak_1984.pdf.

  • Jiang, H., C. Tao, and Y. Pei, 2019: Estimation of tropical cyclone intensity in the North Atlantic and northeastern Pacific basins using TRMM satellite passive microwave observations. J. Appl. Meteor. Climatol., 58, 185197, https://doi.org/10.1175/JAMC-D-18-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., T. L. Olander, and K. R. Knapp, 2013: Trend analysis with a new global record of tropical cyclone intensity. J. Climate, 26, 99609976, https://doi.org/10.1175/JCLI-D-13-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. R. Knapp, T. L. Olander, and C. S. Velden, 2020: Global increase in major tropical cyclone exceedance probability over the past four decades. Proc. Natl. Acad. Sci. USA, 117, 11 97511 980, https://doi.org/10.1073/pnas.1920849117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J., J. Im, D. Cha, H. Park, and S. Sim, 2019: Tropical cyclone intensity estimation using multi-dimensional convolutional neural networks from geostationary satellite data. Remote Sens., 12, 108, https://doi.org/10.3390/rs12010108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manion, A., C. Evans, T. L. Olander, C. S. Velden, and L. D. Grasso, 2015: An evaluation of advanced Dvorak technique–derived tropical cyclone intensity estimates during extratropical transition using synthetic satellite imagery. Wea. Forecasting, 30, 9841009, https://doi.org/10.1175/WAF-D-15-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maskey, M., and Coauthors, 2020: Deepti: Deep learning-based tropical cyclone intensity estimation system. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 13, 42714281, https://doi.org/10.1109/JSTARS.2020.3011907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olander, T. L., 2021: The Advanced Dvorak Technique (ADT) Users Guide, version 9.0. Accessed 27 September 2021, http://tropic.ssec.wisc.edu/misc/adt/info.html.

  • Olander, T. L., and C. S. Velden, 2019: The advanced Dvorak technique (ADT) for estimating tropical cyclone intensity: Update and new capabilities. Wea. Forecasting, 34, 905922, https://doi.org/10.1175/WAF-D-19-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pineros, M., E. Ritchie, and J. Tyo, 2008: Objective measures of tropical cyclone structure and intensity change from remotely sensed infrared image data. IEEE Trans. Geosci. Remote Sens., 46, 35743580, https://doi.org/10.1109/TGRS.2008.2000819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pradhan, R., R. Aygun, M. Maskey, R. Ramachandran, and D. Cecil, 2018: Tropical cyclone intensity estimation using a deep convolutional neural network. IEEE Trans. Image Process., 27, 692702, https://doi.org/10.1109/TIP.2017.2766358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., K. M. Wood, O. G. Rodriguez-Herrera, M. F. Piñeros, and J. S. Tyo, 2014: Satellite-derived tropical cyclone intensity in the North Pacific Ocean using the deviation-angle-variance technique. Wea. Forecasting, 29, 505516, https://doi.org/10.1175/WAF-D-13-00133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and D. Herndon, 2020: A consensus approach for estimating tropical cyclone intensity from meteorological satellites: SATCON. Wea. Forecasting, 35, 16451662, https://doi.org/10.1175/WAF-D-20-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., T. L. Olander, and R. M. Zehr, 1998: Development of an objective scheme to estimate tropical cyclone intensity from digital geostationary satellite infrared imagery. Wea. Forecasting, 13, 172186, https://doi.org/10.1175/1520-0434(1998)013<0172:DOAOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and Coauthors, 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, 11951210, https://doi.org/10.1175/BAMS-87-9-1195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., T. L. Olander, D. Herndon, and J. P. Kossin, 2017: Reprocessing the most intense historical tropical cyclones in the satellite era using the advanced Dvorak technique. Mon. Wea. Rev., 145, 971983, https://doi.org/10.1175/MWR-D-16-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wimmers, A., and C. Velden, 2016: Advancements in objective multisatellite tropical cyclone center fixing. J. Appl. Meteor. Climatol., 55, 197212, https://doi.org/10.1175/JAMC-D-15-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wimmers, A., C. Velden, and J. H. Cossuth, 2019: Using deep learning to estimate tropical cyclone intensity from satellite passive microwave imagery. Mon. Wea. Rev., 147, 22612282, https://doi.org/10.1175/MWR-D-18-0391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, K., X. Yang, M. Zhang, Z. Li, and F. Kong, 2019: Objective estimation of tropical cyclone intensity from active and passive microwave remote sensing observations in the Northwestern Pacific Ocean. Remote Sens., 11, 627, https://doi.org/10.3390/rs11060627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, X., Z. Chen, H. Zhang, and Y. Zheng, 2020: A novel deep learning framework for tropical cyclone intensity estimation using FY-4 satellite imagery. Proc. 2020 Fourth Int. Conf. on Innovation in Artificial Intelligence (ICIAI 2020), New York, NY, Association for Computing Machinery, 10–14, https://doi.org/10.1145/3390557.3394298.

    • Crossref
    • Export Citation
  • Zhang, R., Q. Liu, and R. Hang, 2020: Tropical cyclone intensity estimation using two-branch convolutional neural network from infrared and water vapor images. IEEE Trans. Geosci. Remote Sens., 58, 586597, https://doi.org/10.1109/TGRS.2019.2938204.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1172 0 0
Full Text Views 2931 1579 334
PDF Downloads 1786 625 46