Examining Terrain Effects on an Upstate New York Tornado Event Utilizing a High-Resolution Model Simulation

Luke J. LeBel aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Luke J. LeBel in
Current site
Google Scholar
PubMed
Close
,
Brian H. Tang bDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Brian H. Tang in
Current site
Google Scholar
PubMed
Close
, and
Ross A. Lazear bDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Ross A. Lazear in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The complex terrain at the intersection of the Mohawk and Hudson valleys of New York has an impact on the development and evolution of severe convection in the region. Specifically, previous research has concluded that terrain-channeled flow in the Mohawk and Hudson valleys likely contributes to increased low-level wind shear and instability in the valleys during severe weather events such as the historic 31 May 1998 event that produced a strong (F3) tornado in Mechanicville, New York. The goal of this study is to further examine the impact of terrain channeling on severe convection by analyzing a high-resolution WRF Model simulation of the 31 May 1998 event. Results from the simulation suggest that terrain-channeled flow resulted in the localized formation of an enhanced low-level moisture gradient, resembling a dryline, at the intersection of the Mohawk and Hudson valleys. East of this boundary, the environment was characterized by stronger low-level wind shear and greater low-level moisture and instability, increasing tornadogenesis potential. A simulated supercell intensified after crossing the boundary, as the larger instability and streamwise vorticity of the low-level inflow was ingested into the supercell updraft. These results suggest that terrain can have a key role in producing mesoscale inhomogeneities that impact the evolution of severe convection. Recognition of these terrain-induced boundaries may help in anticipating where the risk of severe weather may be locally enhanced.

Significance Statement

On 31 May 1998, a widespread tornado outbreak occurred in the northeastern United States. One damaging tornado during the outbreak impacted the city of Mechanicville, New York. We used a high-resolution computer model simulation to examine how the topography of the region near Mechanicville affected the potential for tornado occurrence. We found that the topography contributed to the formation of an atmospheric boundary west of Mechanicville at the intersection of the Mohawk and Hudson valleys. The region to the east of the boundary was characterized as an environment particularly favorable for tornadoes. These results suggest that the identification of similar boundaries may be useful in increasing situational awareness of where the risk of severe weather may be locally enhanced.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Luke J. LeBel, ljl5305@psu.edu

Abstract

The complex terrain at the intersection of the Mohawk and Hudson valleys of New York has an impact on the development and evolution of severe convection in the region. Specifically, previous research has concluded that terrain-channeled flow in the Mohawk and Hudson valleys likely contributes to increased low-level wind shear and instability in the valleys during severe weather events such as the historic 31 May 1998 event that produced a strong (F3) tornado in Mechanicville, New York. The goal of this study is to further examine the impact of terrain channeling on severe convection by analyzing a high-resolution WRF Model simulation of the 31 May 1998 event. Results from the simulation suggest that terrain-channeled flow resulted in the localized formation of an enhanced low-level moisture gradient, resembling a dryline, at the intersection of the Mohawk and Hudson valleys. East of this boundary, the environment was characterized by stronger low-level wind shear and greater low-level moisture and instability, increasing tornadogenesis potential. A simulated supercell intensified after crossing the boundary, as the larger instability and streamwise vorticity of the low-level inflow was ingested into the supercell updraft. These results suggest that terrain can have a key role in producing mesoscale inhomogeneities that impact the evolution of severe convection. Recognition of these terrain-induced boundaries may help in anticipating where the risk of severe weather may be locally enhanced.

Significance Statement

On 31 May 1998, a widespread tornado outbreak occurred in the northeastern United States. One damaging tornado during the outbreak impacted the city of Mechanicville, New York. We used a high-resolution computer model simulation to examine how the topography of the region near Mechanicville affected the potential for tornado occurrence. We found that the topography contributed to the formation of an atmospheric boundary west of Mechanicville at the intersection of the Mohawk and Hudson valleys. The region to the east of the boundary was characterized as an environment particularly favorable for tornadoes. These results suggest that the identification of similar boundaries may be useful in increasing situational awareness of where the risk of severe weather may be locally enhanced.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Luke J. LeBel, ljl5305@psu.edu
Save
  • Atkins, N. T., M. L. Weisman, and L. J. Wicker, 1999: The influence of preexisting boundaries on supercell evolution. Mon. Wea. Rev., 127, 29102927, https://doi.org/10.1175/1520-0493(1999)127<2910:TIOPBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bassill, N., 2020: NYS Mesonet Products. New York State Mesonet, accessed 28 March 2020, https://operations.nysmesonet.org/~nbassill/.

  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blier, W., and K. A. Batten, 1994: On the incidence of tornadoes in California. Wea. Forecasting, 9, 301315, https://doi.org/10.1175/1520-0434(1994)009<0301:OTIOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 2000: A tornadic supercell over elevated, complex terrain: The Divide, Colorado, storm of 12 July 1996. Mon. Wea. Rev., 128, 795809, https://doi.org/10.1175/1520-0493(2000)128<0795:ATSOEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., A. Seimon, K. D. LaPenta, and M. J. Dickinson, 2006: Supercell tornadogenesis over complex terrain: The Great Barrington, Massachusetts, tornado on 29 May 1995. Wea. Forecasting, 21, 897922, https://doi.org/10.1175/WAF957.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and J. P. Monteverdi, 1991: An analysis of a mesocyclone-induced tornado occurrence in northern California. Wea. Forecasting, 6, 1331, https://doi.org/10.1175/1520-0434(1991)006<0013:AAOAMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Childs, S. J., and R. S. Schumacher, 2019: An updated severe hail and tornado climatology for eastern Colorado. J. Appl. Meteor. Climatol., 58, 22732293, https://doi.org/10.1175/JAMC-D-19-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149180, https://doi.org/10.1175/MWR-D-16-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2018: Is there a “tipping point” between simulated nontornadic and tornadic supercells in VORTEX2 environments? Mon. Wea. Rev., 146, 26672693, https://doi.org/10.1175/MWR-D-18-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, J. M. L. Dahl, L. J. Wicker, and A. J. Clark, 2017: Volatility of tornadogenesis: An ensemble of simulated nontornadic and tornadic supercells in VORTEX2 environments. Mon. Wea. Rev., 145, 46054625, https://doi.org/10.1175/MWR-D-17-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, R. L. Thompson, B. T. Smith, and R. E. Jewell, 2019: Using near-ground storm relative helicity in supercell tornado forecasting. Wea. Forecasting, 34, 14171435, https://doi.org/10.1175/WAF-D-19-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coleman, T. A., and P. G. Dixon, 2014: An objective analysis of tornado risk in the United States. Wea. Forecasting, 29, 366376, https://doi.org/10.1175/WAF-D-13-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., 71, 30273051, https://doi.org/10.1175/JAS-D-13-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006, https://doi.org/10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2015: A review of supercell and tornado dynamics. Atmos. Res., 158–159, 274291, https://doi.org/10.1016/j.atmosres.2014.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esterheld, J. M., and D. J. Giuliano, 2008: Discriminating between tornadic and non-tornadic supercells: A new hodograph technique. Electron. J. Severe Storms Meteor., 3 (2), https://ejssm.org/archives/2008/vol-3-2-2008/.

    • Search Google Scholar
    • Export Citation
  • European Centre for Medium-Range Weather Forecasts, 2017: ERA5 reanalysis. National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 6 July 2020, https://doi.org/10.5065/D6X34W69.

    • Crossref
    • Export Citation
  • French, A. J., and M. D. Parker, 2012: Observations of mergers between squall lines and isolated supercell thunderstorms. Wea. Forecasting, 27, 255278, https://doi.org/10.1175/WAF-D-11-00058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, A. J., and M. D. Parker, 2014: Numerical simulations of bow echo formation following a squall line-supercell merger. Mon. Wea. Rev., 142, 47914822, https://doi.org/10.1175/MWR-D-13-00356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1989: The Teton–Yellowstone tornado of 21 July 1987. Mon. Wea. Rev., 117, 19131940, https://doi.org/10.1175/1520-0493(1989)117<1913:TTYTOJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., T. Andretta, S. J. Luberda, J. Vogt, Y. Wang, L. D. Oolman, J. Finch, and D. Bikos, 2009: A case study of a long-lived tornadic mesocyclone in a low-CAPE complex-terrain environment. Electron. J. Severe Storms Meteor., 4 (3), https://ejssm.org/archives/2009/vol-4-3-2009/.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and K. R. Knupp, 1993: Tornadogenesis via squall line and supercell interaction: The November 15, 1989, Huntsville, Alabama, tornado. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 183–200.

    • Crossref
    • Export Citation
  • Gray, K., and J. Frame, 2019: Investigating the transition from elevated multicellular convection to surface-based supercells during the tornado outbreak of 24 August 2016 using a WRF Model simulation. Wea. Forecasting, 34, 10511079, https://doi.org/10.1175/WAF-D-18-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hales, J. E., Jr., 1985: Synoptic features associated with Los Angeles tornado occurrences. Bull. Amer. Meteor. Soc., 66, 657662, https://doi.org/10.1175/1520-0477-66.6.657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannesen, R., N. Dotzek, H. Gysi, and K. D. Beheng, 1998: Case study of a tornado in the upper Rhine Valley. Meteor. Z., 7, 163170, https://doi.org/10.1127/metz/7/1998/163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, A. J., C. C. Weiss, and B. C. Ancell, 2016: Ensemble sensitivity analysis for mesoscale forecasts of dryline convection initiation. Mon. Wea. Rev., 144, 41614182, https://doi.org/10.1175/MWR-D-15-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homar, V., M. Gayá, R. Romero, C. Ramis, and S. Alonso, 2003: Tornadoes over complex terrain: An analysis of the 28th August 1999 tornadic event in eastern Spain. Atmos. Res., 67–68, 301317, https://doi.org/10.1016/S0169-8095(03)00064-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katona, B., P. Markowski, C. Alexander, and S. Benjamin, 2016: The influence of topography on convective storm environments in the eastern United States as deduced from the HRRR. Wea. Forecasting, 31, 14811490, https://doi.org/10.1175/WAF-D-16-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kovacs, M., and D. J. Kirshbaum, 2016: Topographic impacts on the spatial distribution of deep convection over southern Quebec. J. Appl. Meteor. Climatol., 55, 743762, https://doi.org/10.1175/JAMC-D-15-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaPenta, K. D., L. F. Bosart, T. J. Galarneau Jr., and M. J. Dickinson, 2005: A multiscale examination of the 31 May 1998 Mechanicville, New York, tornado. Wea. Forecasting, 20, 494516, https://doi.org/10.1175/WAF875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyza, A. W., and K. R. Knupp, 2018: A background investigation of tornado activity across the southern Cumberland Plateau terrain system of northeastern Alabama. Mon. Wea. Rev., 146, 42614278, https://doi.org/10.1175/MWR-D-18-0300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyza, A. W., T. A. Murphy, B. T. Goudeau, P. T. Pangle, K. R. Knupp, and R. A. Wade, 2020: Observed near-storm environment variations across the southern Cumberland Plateau system in northeastern Alabama. Mon. Wea. Rev., 148, 14651482, https://doi.org/10.1175/MWR-D-19-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., L. R. Hoxit, and C. F. Chappell, 1980: A study of tornadic thunderstorm interactions with thermal boundaries. Mon. Wea. Rev., 108, 322336, https://doi.org/10.1175/1520-0493(1980)108<0322:ASOTTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2009: Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research. Atmos. Res., 93, 310, https://doi.org/10.1016/j.atmosres.2008.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and N. Dotzek, 2011: A numerical study of the effects of orography on supercells. Atmos. Res., 100, 457478, https://doi.org/10.1016/j.atmosres.2010.12.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. N. Rasmussen, and J. M. Straka, 1998: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13, 852859, https://doi.org/10.1175/1520-0434(1998)013<0852:TOOTIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., C. Hannon, J. Frame, E. Lancaster, A. Pietrycha, R. Edwards, and R. L. Thompson, 2003: Characteristics of vertical wind profiles near supercells obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12621272, https://doi.org/10.1175/1520-0434(2003)018<1262:COVWPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, W. J., and M. Xue, 2006: Sensitivity analysis of convection of the 24 May 2002 IHOP case using very large ensembles. Mon. Wea. Rev., 134, 192207, https://doi.org/10.1175/MWR3061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2020: Storm events database. NOAA, accessed 29 July 2020, https://www.ncdc.noaa.gov/stormevents/.

  • Nowotarski, C. J., and P. M. Markowski, 2016: Modifications to the near-storm environment induced by simulated supercell thunderstorms. Mon. Wea. Rev., 144, 273293, https://doi.org/10.1175/MWR-D-15-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., P. M. Markowski, and Y. P. Richardson, 2011: The characteristics of numerically simulated supercell storms situated over statically stable boundary layers. Mon. Wea. Rev., 139, 31393162, https://doi.org/10.1175/MWR-D-10-05087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuss, W. A., 1986: Observations of a mountain tornado. Mon. Wea. Rev., 114, 233237, https://doi.org/10.1175/1520-0493(1986)114<0233:OOAMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508529, https://doi.org/10.1175/MWR-D-13-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., M. A. Shapiro, R. M. Hardesty, R. J. Zamora, and J. M. Intrieri, 1991: The finescale structure of a west Texas dryline. Mon. Wea. Rev., 119, 12421258, https://doi.org/10.1175/1520-0493(1991)119<1242:TFSOAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. J. Nowotarski, J. P. Mulholland, and R. L. Thompson, 2020: The influences of effective inflow layer streamwise vorticity and storm-relative flow on supercell updraft properties. J. Atmos. Sci., 77, 30333057, https://doi.org/10.1175/JAS-D-19-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pistotnik, G., A. Martin Holzer, R. Kaltenböck, and S. Tschannett, 2011: An F3 downburst in Austria—A case study with special focus on the importance of real-time site surveys. Atmos. Res., 100, 565579, https://doi.org/10.1016/j.atmosres.2010.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., S. Richardson, J. M. Straka, P. M. Markowski, and D. O. Blanchard, 2000: The association of significant tornadoes with a baroclinic boundary on 2 June 1995. Mon. Wea. Rev., 128, 174191, https://doi.org/10.1175/1520-0493(2000)128<0174:TAOSTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, J., P. Marsh, and R. Thompson, 2021: Sounding climatology page. NOAA/Storm Prediction Center, accessed 2 February 2021, http://www.spc.noaa.gov/exper/soundingclimo/.

  • Rotunno, R., and J. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sprenger, M., and H. Wernli, 2015: The LAGRANTO Lagrangian analysis tool— version 2.0. Geosci. Model. Dev., 8, 25692586, https://doi.org/10.5194/gmd-8-2569-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szoke, E. J., M. L. Weisman, J. M. Brown, F. Caracena, and T. W. Schlatter, 1984: A subsynoptic analysis of the Denver tornadoes of 3 June 1981. Mon. Wea. Rev., 112, 790808, https://doi.org/10.1175/1520-0493(1984)112<0790:ASAOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., M. Vaughan, R. Lazear, K. Corbosiero, L. Bosart, T. Wasula, I. Lee, and K. Lipton, 2016: Topographic and boundary influences on the 22 May 2014 Duanesburg, New York, tornadic supercell. Wea. Forecasting, 31, 107127, https://doi.org/10.1175/WAF-D-15-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, https://doi.org/10.1175/WAF969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and H. V. Murphey, 2009: Analysis of a dryline during IHOP: Implications for convection initiation. Mon. Wea. Rev., 137, 912936, https://doi.org/10.1175/2008MWR2584.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasula, A. C., L. F. Bosart, and K. D. LaPenta, 2002: The influence of terrain on the severe weather distribution across interior eastern New York and western New England. Wea. Forecasting, 17, 12771289, https://doi.org/10.1175/1520-0434(2002)017<1277:TIOTOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convective initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 522, https://doi.org/10.1175/MWR3067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and J. C. Doran, 1993: The relationship between overlying synoptic-scale flows and winds within a valley. J. Appl. Meteor., 32, 16691682, https://doi.org/10.1175/1520-0450(1993)032<1669:TRBOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolf, P. L., 1998: WSR-88D radar depiction of supercell-bow echo interaction: Unexpected evolution of a large, tornadic, “comma-shaped” supercell over eastern Oklahoma. Wea. Forecasting, 13, 492504, https://doi.org/10.1175/1520-0434(1998)013<0492:WRDOSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and W. J. Martin, 2006: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part II: Horizontal convective rolls and convective initiation. Mon. Wea. Rev., 134, 172191, https://doi.org/10.1175/MWR3072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 374 0 0
Full Text Views 1201 781 337
PDF Downloads 605 194 36