Evaluating Foehn Occurrence in a Changing Climate Based on Reanalysis and Climate Model Data Using Machine Learning

Christoph Mony aInstitute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Christoph Mony in
Current site
Google Scholar
PubMed
Close
,
Lukas Jansing aInstitute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Lukas Jansing in
Current site
Google Scholar
PubMed
Close
, and
Michael Sprenger aInstitute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Michael Sprenger in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study explores the possibilities of employing machine learning algorithms to predict foehn occurrence in Switzerland at a north Alpine (Altdorf) and south Alpine (Lugano) station from its synoptic fingerprint in reanalysis data and climate simulations. This allows for an investigation on a potential future shift in monthly foehn frequencies. First, inputs from various atmospheric fields from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERAI) were used to train an XGBoost model. Here, similar predictive performance to previous work was achieved, showing that foehn can accurately be diagnosed from the coarse synoptic situation. In the next step, the algorithm was generalized to predict foehn based on the Community Earth System Model (CESM) ensemble simulations of a present-day and warming future climate. The best generalization between ERAI and CESM was obtained by including the present-day data in the training procedure and simultaneously optimizing two objective functions, namely, the negative log loss and squared mean loss, on both datasets, respectively. It is demonstrated that the same synoptic fingerprint can be identified in CESM climate simulation data. Finally, predictions for present-day and future simulations were verified and compared for statistical significance. Our model is shown to produce valid output for most months, revealing that south foehn in Altdorf is expected to become more common during spring, while north foehn in Lugano is expected to become more common during summer.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christoph Mony, christoph.mony@usys.ethz.ch

Abstract

This study explores the possibilities of employing machine learning algorithms to predict foehn occurrence in Switzerland at a north Alpine (Altdorf) and south Alpine (Lugano) station from its synoptic fingerprint in reanalysis data and climate simulations. This allows for an investigation on a potential future shift in monthly foehn frequencies. First, inputs from various atmospheric fields from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERAI) were used to train an XGBoost model. Here, similar predictive performance to previous work was achieved, showing that foehn can accurately be diagnosed from the coarse synoptic situation. In the next step, the algorithm was generalized to predict foehn based on the Community Earth System Model (CESM) ensemble simulations of a present-day and warming future climate. The best generalization between ERAI and CESM was obtained by including the present-day data in the training procedure and simultaneously optimizing two objective functions, namely, the negative log loss and squared mean loss, on both datasets, respectively. It is demonstrated that the same synoptic fingerprint can be identified in CESM climate simulation data. Finally, predictions for present-day and future simulations were verified and compared for statistical significance. Our model is shown to produce valid output for most months, revealing that south foehn in Altdorf is expected to become more common during spring, while north foehn in Lugano is expected to become more common during summer.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christoph Mony, christoph.mony@usys.ethz.ch

Supplementary Materials

    • Supplemental Materials (PDF 358.93 KB)
Save
  • Beusch, L., S. Raveh-Rubin, M. Sprenger, and L. Papritz, 2018: Dynamics of a Puelche foehn event in the Andes. Meteor. Z., 27, 6780, https://doi.org/10.1127/metz/2017/0841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breiman, L., J. Friedman, C. J. Stone, and R. A. Olshen, 1984: Classification and Regression Trees. CRC Press, 368 pp.

  • Burri, K., B. Dürr, T. Gutermann, A. Neururer, R. Werner, and E. Zala, 2007: Foehn verification with the COSMO model. Int. Conf. on Alpine Meteorology (ICAM), Chambéry, France, Météo-France, Centre National de la Recherche Scientifique, Laboratoire d’Aérologie, Chambéry City Council, European Meteorological Society, and World Meteorological Organization, http://www.agf.ch/doc/AGF_ICAM-2007_e.pdf.

  • Cetti, C., M. Buzzi, and M. Sprenger, 2015: Climatology of Alpine north foehn. Scientific Rep. 100, MeteoSwiss, 76 pp.

  • Chen, T., and C. Guestrin, 2016: XGBoost: A scalable tree boosting system. Proc. 22nd Int. Conf. on Knowledge Discovery and Data Mining, New York, NY, ACM, 785–794.

    • Crossref
    • Export Citation
  • Courvoisier, H. W., and T. Gutermann, 1971: Zur praktischen Anwendung des Föhntests von Widmer. Vol. 21. Arbeitsberichte der MeteoSchweiz, 7 pp.

  • Davis, J., and M. Goadrich, 2006: The relationship between Precision-Recall and ROC curves. Proc. 23rd Int. Conf. on Machine Learning, Pittsburgh, PA,ACM, 233240.

    • Crossref
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drechsel, S., and G. J. Mayr, 2008: Objective forecasting of foehn winds for a subgrid-scale alpine valley. Wea. Forecasting, 23, 205218, https://doi.org/10.1175/2007WAF2006021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duerr, B., 2008: Automatisiertes Verfahren zur Bestimmung von Föhn in Alpentälern. Vol. 223. Arbeitsberichte der MeteoSchweiz, 22 pp.

  • Friedman, J. H., 2001: Greedy function approximation: A gradient boosting machine. Ann. Stat., 25, 11891232, https://doi.org/10.1214/aos/1013203451.

    • Search Google Scholar
    • Export Citation
  • Gerstgrasser, D., 2017: Dokumentation Südföhn. Tech. Rep., MeteoSwiss, 59 pp. [Available from the authors upon request.]

  • Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 12031211, https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutermann, T., 1970: Vergleichende Untersuchungen zur Föhnhäufigkeit im Rheintal zwischen Chur und Bodensee. City-Druck AG, 68 pp.

  • Gutermann, T., B. Dürr, H. Richner, and S. Bader, 2012: Föhnklimatologie Altdorf: Die lange Reihe (1864-2008) und ihre Weiterführung, Vergleich mit anderen Stationen. Vol. 241. Fachbericht MeteoSchweiz, 53 pp.

  • Guzman-Morales, J., and A. Gershunov, 2019: Climate change suppresses Santa Ana winds of Southern California and sharpens their seasonality. Geophys. Res. Lett., 46, 27722780, https://doi.org/10.1029/2018GL080261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hächler, P., K. Burri, B. Dürr, T. Gutermann, A. Neururer, H. Richner, and R. Werner, 2011: Der Föhnfall vom 8: Dezember 2006–eine Fallstudie. Vol. 234. Arbeitsberichte der MeteoSchweiz, 56 pp.

  • Hastie, T., R. Tibshirani, and J. Friedman, 2009: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media, 745 pp.

  • Hoens, T. R., and N. V. Chawla, 2013: Imbalanced datasets: From sampling to classifiers. Imbalanced Learning: Foundations, Algorithms, and Applications, H. He and Y. Ma, Eds., John Wiley & Sons, 43–59.

    • Crossref
    • Export Citation
  • Hogan, R. J., and I. B. Mason, 2012: Deterministic forecasts of binary events. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, I. Jolliffe and D. Stephenson, Eds., John Wiley & Sons, 31–59.

    • Crossref
    • Export Citation
  • Huguenin, M. F., E. M. Fischer, S. Kotlarski, S. C. Scherrer, C. Schwierz, and R. Knutti, 2020: Lack of change in the projected frequency and persistence of atmospheric circulation types over central Europe. Geophys. Res. Lett., 47, e2019GL086132, https://doi.org/10.1029/2019GL086132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kljun, N., M. Sprenger, and C. Schär, 2001: Frontal modification and lee cyclogenesis in the Alps: A case study using the ALPEX reanalysis data set. Meteor. Atmos. Phys., 78, 89105, https://doi.org/10.1007/s007030170008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laffin, M., C. Zender, S. Singh, and M. van Wessem, 2019: 40 years of föhn winds on the Antarctic peninsula: Impact on surface melt from 1979-2018. 2019 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract 10501254.1, https://doi.org/10.1002/essoar.10501254.1.

    • Crossref
    • Export Citation
  • Lotteraner, C. J., 2009: Synoptisch-klimatologische Auswertung von Windfeldern im Alpenraum. Ph.D. thesis, University Vienna, 112 pp.

  • Louppe, G., 2014: Understanding random forests: From theory to practice. Ph.D. thesis, Université de Liège, 223 pp.

  • Mayr, G., and Coauthors, 2018: The community foehn classification experiment. Bull. Amer. Meteor. Soc., 99, 22292235, https://doi.org/10.1175/BAMS-D-17-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGowan, H., and A. Sturman, 1996: Regional and local scale characteristics of foehn wind events over the South Island of New Zealand. Meteor. Atmos. Phys., 58, 151164, https://doi.org/10.1007/BF01027562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehta, P., M. Bukov, C.-H. Wang, A. G. Day, C. Richardson, C. K. Fisher, and D. J. Schwab, 2019: A high-bias, low-variance introduction to machine learning for physicists. Phys. Rep., 810, 1124, https://doi.org/10.1016/j.physrep.2019.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mercer, A. E., M. B. Richman, H. B. Bluestein, and J. M. Brown, 2008: Statistical modeling of downslope windstorms in Boulder, Colorado. Wea. Forecasting, 23, 11761194, https://doi.org/10.1175/2008WAF2007067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, N. L., and N. J. Schlegel, 2006: Climate change projected fire weather sensitivity: California Santa Ana wind occurrence. Geophys. Res. Lett., 33, L15711, https://doi.org/10.1029/2006GL025808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1996: The Finley affair: A signal event in the history of forecast verification. Wea. Forecasting, 11, 320, https://doi.org/10.1175/1520-0434(1996)011<0003:TFAASE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oard, M. J., 1993: A method for predicting Chinook winds east of the Montana Rockies. Wea. Forecasting, 8, 166180, https://doi.org/10.1175/1520-0434(1993)008<0166:AMFPCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pezzatti, G., A. Angelis, and M. Conedera, 2016: Potenzielle Entwicklung der Waldbrandgefahr im Klimawandel. Wald im Klimawandel, A. R. Pluess et al., Eds., Haupt Verlag, 223–245.

  • Plavcan, D., and G. J. Mayr, 2015: Towards an Alpine foehn climatology. 33rd Int. Conf. on Alpine Meteorology, Innsbruck, Austria, Institute of Meteorology and Geophysics, University of Innsbruck, 014.4, https://www.uibk.ac.at/congress/icam2015/abstracts_oral_presentations.htm#O14.4.

  • Plavcan, D., G. J. Mayr, and A. Zeileis, 2014: Automatic and probabilistic foehn diagnosis with a statistical mixture model. J. Appl. Meteor. Climatol., 53, 652659, https://doi.org/10.1175/JAMC-D-13-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raible, C. C., M. Messmer, F. Lehner, T. F. Stocker, and R. Blender, 2018: Extratropical cyclone statistics during the last millennium and the 21st century. Climate Past, 14, 1499–1514, https://doi.org/10.5194/cp-14-1499-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richner, H., and P. Hächler, 2013: Understanding and forecasting Alpine foehn. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, F. K. Chow, S. F. De Wekker, and B. J. Snyder, Eds., Springer, 219–260.

    • Crossref
    • Export Citation
  • Richner, H., and B. Duerr, 2015: Facts and fallacies related to dimmerfoehn. Tech. Rep., ETH Zurich, 4 pp., https://doi.org/10.3929/ethz-a-010439615.

    • Crossref
    • Export Citation
  • Richner, H., B. Dürr, T. Gutermann, and S. Bader, 2014: The use of automatic station data for continuing the long time series (1864 to 2008) of foehn in Altdorf. Meteor. Z., 23, 159166, https://doi.org/10.1127/0941-2948/2014/0528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Röthlisberger, M., M. Sprenger, E. Flaounas, U. Beyerle, and H. Wernli, 2020: The substructure of extremely hot summers in the Northern Hemisphere. Wea. Climate Dyn., 1, 4562, https://doi.org/10.5194/wcd-1-45-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaller, N., J. Sillmann, J. Anstey, E. M. Fischer, C. M. Grams, and S. Russo, 2018: Influence of blocking on Northern European and Western Russian heatwaves in large climate model ensembles. Environ. Res. Lett., 13, 054015, https://doi.org/10.1088/1748-9326/aaba55.

    • Crossref
    • Export Citation
  • Sharples, J. J., G. A. Mills, R. H. McRae, and R. O. Weber, 2010: Foehn-like winds and elevated fire danger conditions in southeastern Australia. J. Appl. Meteor. Climatol., 49, 10671095, https://doi.org/10.1175/2010JAMC2219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, C., H. Pearce, A. Sturman, and P. Zawar-Reza, 2014: Behaviour of fire weather indices in the 2009–10 New Zealand wildland fire season. Int. J. Wildland Fire, 23, 11471164, https://doi.org/10.1071/WF12169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., B. Dürr, and H. Richner, 2016: Foehn studies in Switzerland. From Weather Observations to Atmospheric and Climate Sciences in Switzerland: Celebrating 100 Years of the Swiss Society for Meteorology, S. Willemse and M. Furger, Eds., vdf Hochschulverlag AG, 215–247.

  • Sprenger, M., S. Schemm, R. Oechslin, and J. Jenkner, 2017: Nowcasting foehn wind events using the AdaBoost machine learning algorithm. Wea. Forecasting, 32, 10791099, https://doi.org/10.1175/WAF-D-16-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinacker, R., 2006: Alpiner Föhn—Eine neue Strophe zu einem alten Lied. Vol. 32. Promet, 3–10.

  • Van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, https://doi.org/10.1007/s10584-011-0148-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vergeiner, J., 2004: South foehn studies and a new foehn classification scheme in the Wipp and Inn valley. Ph.D. thesis, University of Innsbruck, 105 pp.

  • Widmer, R., 1966: Statistische Untersuchungen über den Föhn im Reusstal und Versuch einer objektiven Föhnprognose für die Station Altdorf. Vierteljahrsschr. Natforsch. Ges. Zur., 111, 331375.

    • Search Google Scholar
    • Export Citation
  • Wilhelm, M., M. Buzzi, M. Sprenger, and P. Hächler, 2012: COSMO-2 model performance in forecasting foehn: A systematic process-oriented verification. M.S. thesis, Dept. of Environmental Systems Science, ETH Zürich, 55 pp.

  • WMO, 1992: International Meteorological Vocabulary, Vol. 182. World Meteorological Organization, 784 pp.

  • Zumbrunnen, T., H. Bugmann, M. Conedera, and M. Bürgi, 2009: Linking forest fire regimes and climate—A historical analysis in a dry inner alpine valley. Ecosystems, 12, 7386, https://doi.org/10.1007/s10021-008-9207-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweifel, L., G. Mayr, and R. Stauffer, 2016: Probabilistic Foehn forecasting for the Gotthard Region based on model output statistics. M.S. thesis, Faculty of Geo- and Atmospheric Sciences, University of Innsbruck, 90 pp.

All Time Past Year Past 30 Days
Abstract Views 385 0 0
Full Text Views 1481 1043 349
PDF Downloads 687 288 22