• Bluestein, H. B., W.-C. Lee, M. Bell, C. C. Weiss, and A. L. Pazmany, 2003: Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part II: Tornado-vortex structure. Mon. Wea. Rev., 131, 29682984, https://doi.org/10.1175/1520-0493(2003)131<2968:MDROOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1977: Gust front evolution and tornado genesis as viewed by Doppler radar. J. Appl. Meteor., 16, 333338, https://doi.org/10.1175/1520-0450(1977)016<0333:GFEATG> 2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255, https://doi.org/10.1175/2008JAMC1732.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 2009: Tornado losses in the United States. Nat. Hazards Rev., 10, 145150, https://doi.org/10.1061/(ASCE)1527-6988(2009)10:4(145).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., E. R. Mansell, Y. Jung, L. J. Wicker, M. R. Kumjian, and M. Xue, 2014: Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J. Atmos. Sci., 71, 276299, https://doi.org/10.1175/JAS-D-13-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., E. R. Mansell, and M. R. Kumjian, 2015: Does wind shear cause hydrometeor size sorting?. J. Atmos. Sci., 72, 340348, https://doi.org/10.1175/JAS-D-14-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dennis, E. J., and M. R. Kumjian, 2017: The impact of vertical wind shear on hail growth in simulated supercells. J. Atmos. Sci., 74, 641663, https://doi.org/10.1175/JAS-D-16-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002a: The 8 June 1995 McLean, Texas, storm. Part I: Observations of cyclic tornadogenesis. Mon. Wea. Rev., 130, 26262648, https://doi.org/10.1175/1520-0493(2002)130<2626:TJMTSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002b: The 8 June 1995 McLean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130, 26492670, https://doi.org/10.1175/1520-0493(2002)130<2649:TJMTSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., and D. M. Kingfield, 2019: Dissipation characteristics of tornadic vortex signatures associated with long-duration tornadoes. J. Appl. Meteor. Climatol., 58, 317339, https://doi.org/10.1175/JAMC-D-18-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, I. PopStefanija, C. Baldi, and R. T. Bluth, 2013: Reexamining the vertical development of tornadic vortex signature in supercells. Mon. Wea. Rev., 141, 45764601, https://doi.org/10.1175/MWR-D-12-00315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, I. PopStefanija, C. Baldi, and R. T. Bluth, 2014: Mobile, phased-array, Doppler radar observations of tornadoes at X band. Mon. Wea. Rev., 142, 10101036, https://doi.org/10.1175/MWR-D-13-00101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., W. Burgess, E. R. Mansell, and L. J. Wicker, 2015: Bulk hook echo raindrop sizes retrieved using mobile, polarimetric Doppler radar observations. J. Appl. Meteor. Climatol., 54, 423450, https://doi.org/10.1175/JAMC-D-14-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grzych, M. L., B. D. Lee, and C. A. Finley, 2007: Thermodynamic analysis of supercell rear-flank downdrafts from project ANSWERS. Mon. Wea. Rev., 135, 240246, https://doi.org/10.1175/MWR3288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., and A. V. Ryzhkov, 2006: Validation of polarimetric hail detection. Wea. Forecasting, 21, 839850, https://doi.org/10.1175/WAF956.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirth, B. D., J. L. Schroeder, and C. C. Weiss, 2008: Surface analysis of the rear-flank downdraft outflow in two tornadic supercells. Mon. Wea. Rev., 136, 23442363, https://doi.org/10.1175/2007MWR2285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., T. N. Sandmæl, C. K. Potvin, and A. M. Murphy, 2020: Distinguishing characteristics of tornadic and non-tornadic supercell storms from composite mean analyses of radar observations. Mon. Wea. Rev., 148, 50155040, https://doi.org/10.1175/MWR-D-20-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, J. L., H. B. Bluestein, and J. C. Snyder, 2015: Rapid-scan, polarimetric, Doppler radar observations of tornadogenesis and tornado dissipation in a tornadic supercell: The El Reno, Oklahoma, storm of 24 May 2011. Mon. Wea. Rev., 143, 26852710, https://doi.org/10.1175/MWR-D-14-00253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., J. W. F. Goddard, and S. M. Cherry, 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113, 469489, https://doi.org/10.1002/qj.49711347604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingfield, D. M., and J. C. Picca, 2018: Development of an operational convective nowcasting algorithm using raindrop size sorting information from polarimetric radar data. Wea. Forecasting, 33, 14771495, https://doi.org/10.1175/WAF-D-18-0025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirkpatrick, C., E. W. McCaul Jr., and C. Cohen, 2009: Variability of updraft and downdraft characteristics in a large parameter space study of convective storms. Mon. Wea. Rev., 137, 15501561, https://doi.org/10.1175/2008MWR2703.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K., J. Wurman, Y. Richardson, P. Markowski, P. Robinson, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571181, https://doi.org/10.1175/MWR-D-12-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2011: Precipitation properties of supercell hook echoes. Electron. J. Severe Storms Meteor., 6 (5), https://ejssm.org/archives/2011/vol-6-5-2011/.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications. J. Oper. Meteor., 1, 243264, https://doi.org/10.15191/nwajom.2013.0120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013c: Principles and applications of dual-polarization weather radar. Part III: Artifacts. J. Oper. Meteor., 1, 265274, https://doi.org/10.15191/nwajom.2013.0121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008a: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008b: Microphysical differences between tornadic and nontornadic supercell rear-flank downdrafts revealed by dual-polarization radar measurements. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 3B.4, https://ams.confex.com/ams/pdfpapers/141912.pdf.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2009: Storm-relative helicity revealed from polarimetric radar measurements. J. Atmos. Sci., 66, 667685, https://doi.org/10.1175/2008JAS2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and K. Lombardo, 2020: A hail growth trajectory model for exploring the environmental controls on hail size: Model physics and idealized tests. J. Atmos. Sci., 77, 27652791, https://doi.org/10.1175/JAS-D-20-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A. V. Ryzhkov, and V. T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 18201843, https://doi.org/10.1175/JAMC-D-13-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., J. C. Snyder, T. J. Schuur, T. T. Lindley, P. L. Heinselman, J. C. Furtado, J. W. Brogden, and R. Toomey, 2019: Rapid-update radar observations of ZDR column depth and its use in the warning decision process. Wea. Forecasting, 34, 11731188, https://doi.org/10.1175/WAF-D-19-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagerquist, R., A. McGovern, C. R. Homeyer, D. J. Gagne, and T. Smith, 2020: Deep learning on three-dimensional multiscale data for next-hour tornado prediction. Mon. Wea. Rev., 148, 28372861, https://doi.org/10.1175/MWR-D-19-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, G. Stumpf, and K. Hondl, 2007: The Warning Decision Support System–Integrated Information. Wea. Forecasting, 22, 596612, https://doi.org/10.1175/WAF1009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. D., C. A. Finley, and C. D. Karstens, 2012: The Bowdle, South Dakota, cyclic tornadic supercell of 22 May 2010: Surface analysis of rear-flank downdraft evolution and multiple internal surges. Mon. Wea. Rev., 140, 34193441, https://doi.org/10.1175/MWR-D-11-00351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeffler, S. D., and M. R. Kumjian, 2018: Quantifying the separation of enhanced ZDR and KDP regions in nonsupercell tornadic storms. Wea. Forecasting, 33, 11431157, https://doi.org/10.1175/WAF-D-18-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeffler, S. D., and M. R. Kumjian, 2020: Idealized model simulations to determine impacts of storm-relative winds on differential reflectivity and specific differential phase fields. J. Geophys. Res. Atmos., 125, e2020JD033870, https://doi.org/10.1029/2020JD033870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeffler, S. D., M. R. Kumjian, M. Jurewicz, and M. M. French, 2020: Differentiating between tornadic and nontornadic supercells using polarimetric radar signatures of hydrometeor size sorting. Geophys. Res. Lett., 47, e2020GL088242, https://doi.org/10.1029/2020GL088242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marion, G. R., R. J. Trapp, and S. W. Nesbitt, 2019: Using overshooting top area to discriminate potential for large, intense tornadoes. Geophys. Res. Lett., 46, 12th 52012th&526, https://doi.org/10.1029/2019GL084099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. Richardson, 2014: What we know and don’t know about tornado formation. Phys. Today, 67, 2531, https://doi.org/10.1063/PT.3.2514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Y. Richardson, J. Marquis, J. Wurman, K. Kosiba, P. Robinson, E. Rasmussen, and D. Dowell, 2012: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part II: Intensification of low-level rotation. Mon. Wea. Rev., 140, 29162938, https://doi.org/10.1175/MWR-D-11-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., T. P. Hatlee, and Y. P. Richardson, 2018: Tornadogenesis in the 12 May 2010 supercell thunderstorm intercepted by VORTEX2 near Clinton, Oklahoma. Mon. Wea. Rev., 146, 36233650, https://doi.org/10.1175/MWR-D-18-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, P. Markowski, D. Dowell, and J. Wurman, 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 327, https://doi.org/10.1175/MWR-D-11-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKeown, K. E., M. M. French, K. S. Tuftedal, H. B. Bluestein, D. W. Reif, and Z. B. Wienhoff, 2020: Rapid-scan and polarimetric radar observations of the dissipation of a violent tornado on 9 May 2016 near Sulphur, Oklahoma. Mon. Wea. Rev., 148, 39513971, https://doi.org/10.1175/MWR-D-20-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. J. Nowotarski, and H. Morrison, 2019: The role of vertical wind shear in modulating maximum supercell updraft velocities. J. Atmos. Sci., 76, 31693189, https://doi.org/10.1175/JAS-D-19-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, J., 1959: Remarks on zeros and ties in the Wilcoxon signed rank procedures. J. Amer. Stat. Assoc., 54, 655667, https://doi.org/10.1080/01621459.1959.10501526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reimel, K. J., and M. R. Kumjian, 2021: Evaluation of KDP estimation algorithm performance in rain using a known-truth framework. J. Atmos. Oceanic Technol., 38, 587605, https://doi.org/10.1175/JTECH-D-20-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, L. M., W. D. Zittel, R. R. Lee, V. M. Melnikov, R. L. Ice, and J. G. Cunningham, 2017: Bragg scatter detection by the WSR-88D. Part II: Assessment of ZDR bias estimation. J. Atmos. Oceanic Technol., 34, 479493, https://doi.org/10.1175/JTECH-D-16-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., D. W. Burgess, and R. B. Wilhelmson, 2008: A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon. Wea. Rev., 136, 28492870, https://doi.org/10.1175/2008MWR2330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Kumjian, S. Ganson, and A. Khain, 2013: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, https://doi.org/10.1175/JAMC-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., A. V. Ryzhkov, M. R. Kumjian, A. P. Khain, and J. C. Picca, 2015: A ZDR column detection algorithm to examine convective storm updrafts. Wea. Forecasting, 30, 18191844, https://doi.org/10.1175/WAF-D-15-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., G. R. Marion, and S. W. Nesbitt, 2017: The regulation of tornado intensity by updraft width. J. Atmos. Sci., 74, 41994211, https://doi.org/10.1175/JAS-D-16-0331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuftedal, K. S., M. M. French, D. M. Kingfield, and J. C. Snyder, 2021: Observed bulk hook echo drop size distribution evolution in supercell tornadogenesis and tornadogenesis failure. Mon. Wea. Rev., 149, 25392557, https://doi.org/10.1175/MWR-D-20-0353.1.

    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., 2016: Polarimetric variability of classic supercell storms as a function of environment. J. Appl. Meteor. Climatol., 55, 19071925, https://doi.org/10.1175/JAMC-D-15-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., 2017: Polarimetric radar metrics related to tornado life cycles and intensity in supercell storms. Mon. Wea. Rev., 145, 36713686, https://doi.org/10.1175/MWR-D-16-0453.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., 2020: A preliminary polarimetric radar comparison of pre-tornadic and nontornadic supercell storms. Mon. Wea. Rev., 148, 15671584, https://doi.org/10.1175/MWR-D-19-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, R. A., H. Richter, H. A. Ramsay, S. T. Siems, and M. J. Manton, 2017: Impact of variations in upper-level shear on simulated supercells. Mon. Wea. Rev., 145, 26592681, https://doi.org/10.1175/MWR-D-16-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcoxon, F., 1945: Individual comparisons by ranking methods. Biom. Bull., 1, 8083, https://doi.org/10.2307/3001968.

  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. Zhang, 2007: Dual-Doppler and single-Doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 135, 736758, https://doi.org/10.1175/MWR3276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The Second Verification of the Origins of Rotation in Tornadoes Experiment. Bull. Amer. Meteor. Soc., 93, 11471170, https://doi.org/10.1175/BAMS-D-11-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 165 165 107
Full Text Views 78 78 50
PDF Downloads 90 90 52

Storm-Scale Polarimetric Radar Signatures Associated with Tornado Dissipation in Supercells

View More View Less
  • 1 a School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York
  • | 2 b Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
  • | 3 c NOAA/Global Systems Laboratory, Boulder, Colorado
  • | 4 d Department of Meteorology and Atmospheric Sciences, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Polarimetric radar data from the WSR-88D network are used to examine the evolution of various polarimetric precursor signatures to tornado dissipation within a sample of 36 supercell storms. These signatures include an increase in bulk hook echo median raindrop size, a decrease in midlevel differential radar reflectivity factor (ZDR) column area, a decrease in the magnitude of the ZDR arc, an increase in the area of low-level large hail, and a decrease in the orientation angle of the vector separating low-level ZDR and specific differential phase (KDP) maxima. Only supercells that produced “long-duration” tornadoes (with at least four consecutive volumes of WSR-88D data) are investigated, so that signatures can be sufficiently tracked in time, and novel algorithms are used to isolate each storm-scale process. During the time leading up to tornado dissipation, we find that hook echo median drop size (D0) and median ZDR remain relatively constant, but hook echo median KDP and estimated number concentration (NT) increase. The ZDR arc maximum magnitude and ZDRKDP separation orientation angles are observed to decrease in most dissipation cases. Neither the area of large hail nor the ZDR column area exhibit strong signals leading up to tornado dissipation. Finally, combinations of storm-scale behaviors and TVS behaviors occur most frequently just prior to tornado dissipation, but also are common 15–20 min prior to dissipation. The results from this study provide evidence that nowcasting tornado dissipation using dual-polarization radar may be possible when combined with TVS monitoring, subject to important caveats.

Segall’s current affiliation: CIMMS/OU/NSSL, Norman, Oklahoma.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jacob H. Segall, jacob.segall@noaa.gov

Abstract

Polarimetric radar data from the WSR-88D network are used to examine the evolution of various polarimetric precursor signatures to tornado dissipation within a sample of 36 supercell storms. These signatures include an increase in bulk hook echo median raindrop size, a decrease in midlevel differential radar reflectivity factor (ZDR) column area, a decrease in the magnitude of the ZDR arc, an increase in the area of low-level large hail, and a decrease in the orientation angle of the vector separating low-level ZDR and specific differential phase (KDP) maxima. Only supercells that produced “long-duration” tornadoes (with at least four consecutive volumes of WSR-88D data) are investigated, so that signatures can be sufficiently tracked in time, and novel algorithms are used to isolate each storm-scale process. During the time leading up to tornado dissipation, we find that hook echo median drop size (D0) and median ZDR remain relatively constant, but hook echo median KDP and estimated number concentration (NT) increase. The ZDR arc maximum magnitude and ZDRKDP separation orientation angles are observed to decrease in most dissipation cases. Neither the area of large hail nor the ZDR column area exhibit strong signals leading up to tornado dissipation. Finally, combinations of storm-scale behaviors and TVS behaviors occur most frequently just prior to tornado dissipation, but also are common 15–20 min prior to dissipation. The results from this study provide evidence that nowcasting tornado dissipation using dual-polarization radar may be possible when combined with TVS monitoring, subject to important caveats.

Segall’s current affiliation: CIMMS/OU/NSSL, Norman, Oklahoma.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jacob H. Segall, jacob.segall@noaa.gov
Save