• Adams-Selin, R. D., A. J. Clark, C. J. Melick, S. R. Dembek, I. L. Jirak, and C. L. Ziegler, 2019: Evolution of WRF-HAILCAST during the 2014-16 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Wea. Forecasting, 34, 6179, https://doi.org/10.1175/WAF-D-18-0024.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, https://doi.org/10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Atger, F., 2003: Spatial and interannual variability of the reliability of ensemble-based probabilistic forecasts: Consequences for calibration. Mon. Wea. Rev., 131, 15091523, https://doi.org/10.1175//1520-0493(2003)131<1509:SAIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and M. P. Kay, 2003: Climatological estimates of local daily tornado probability. Wea. Forecasting, 18, 626640, https://doi.org/10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burke, A., N. Snook, D. J. Gagne, S. McCorkel, and A. McGovern, 2020: Calibration of machine learning-based probabilistic hail predictions for operational forecasting. Wea. Forecasting, 35, 149168, https://doi.org/10.1175/WAF-D-19-0105.1.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, https://doi.org/10.1175/WAF-D-11-00151.1.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and D. T. Lindsey, 2014: An empirical model for assessing the severe weather potential of developing convection. Wea. Forecasting, 29, 639653, https://doi.org/10.1175/WAF-D-13-00113.1.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., and Coauthors, 2018: The NOAA/CIMSS ProbSevere Model: Incorporation of total lightning and validation. Wea. Forecasting, 33, 331345, https://doi.org/10.1175/WAF-D-17-0099.1.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, L. Cronce, and J. Brunner, 2020: NOAA ProbSevere v2.0–ProbHail, ProbWind, and ProbTor. Wea. Forecasting, 35, 15231543, https://doi.org/10.1175/WAF-D-19-0242.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012a: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, https://doi.org/10.1175/BAMS-D-11-00040.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., J. S. Kain, P. T. Marsh, J. Correia Jr., M. Xue, and F. Kong, 2012b: Forecasting tornado pathlengths using a three-dimensional object identification algorithm applied to convection-allowing forecasts. Wea. Forecasting, 27, 10901113, https://doi.org/10.1175/WAF-D-11-00147.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., J. Gao, P. T. Marsh, T. Smith, J. S. Kain, J. Correia Jr., M. Xue, and F. Kong, 2013: Tornado pathlength forecasts from 2010 to 2011 using ensemble updraft helicity. Wea. Forecasting, 28, 387407, https://doi.org/10.1175/WAF-D-12-00038.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2018: The Community Leveraged Unified Ensemble (CLUE) in the 2016 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Bull. Amer. Meteor. Soc., 99, 14331448, https://doi.org/10.1175/BAMS-D-16-0309.1.

    • Search Google Scholar
    • Export Citation
  • Developmental Testbed Center, 2017: Gridpoint statistical interpolation user’s guide version 3.6. Developmental Testbed Center Doc., 158 pp., https://dtcenter.org/com-GSI/users/docs/.

  • Flora, M. L., C. K. Potvin, P. S. Skinner, S. Handler, and A. McGovern, 2021: Using machine learning to generate storm-scale probabilistic guidance of severe weather hazards in the Warn-on-Forecast System. Mon. Wea. Rev., 149, 15351557, https://doi.org/10.1175/MWR-D-20-0194.1.

    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., A. McGovern, S. E. Haupt, R. A. Sobash, J. K. Williams, and M. Xue, 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 18191840, https://doi.org/10.1175/WAF-D-17-0010.1.

    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., S. E. Haupt, D. W. Nychka, and G. Thompson, 2019: Interpretable deep learning for spatial analysis of severe hailstorms. Mon. Wea. Rev., 147, 28272845, https://doi.org/10.1175/MWR-D-18-0316.1.

    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., A. J. Clark, and S. R. Dembek, 2016: Forecasting tornadoes using convection-permitting ensembles. Wea. Forecasting, 31, 273295, https://doi.org/10.1175/WAF-D-15-0134.1.

    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., and Coauthors, 2017: Breaking new ground in severe weather prediction: The 2015 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Wea. Forecasting, 32, 15411568, https://doi.org/10.1175/WAF-D-16-0178.1.

    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., A. J. Clark, B. T. Smith, R. L. Thompson, I. Jirak, and S. R. Dembek, 2018a: Blended probabilistic tornado forecasts: Combining climatological frequencies with NSSL-WRF ensemble forecasts. Wea. Forecasting, 33, 443460, https://doi.org/10.1175/WAF-D-17-0132.1.

    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., and Coauthors, 2018b: Spring Forecasting Experiment 2018: Program overview and operations plan. NOAA/NSSL, 46 pp., https://hwt.nssl.noaa.gov/sfe/2018/docs/HWT_SFE2018_operations_plan.pdf.

  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, https://doi.org/10.1175/BAMS-D-12-00014.1.

    • Search Google Scholar
    • Export Citation
  • Haupt, S. E., and Coauthors, 2022: The history and practice of AI in the environmental sciences. Bull. Amer. Meteor. Soc., 103, E1351E1370, https://doi.org/10.1175/BAMS-D-20-0234.1.

    • Search Google Scholar
    • Export Citation
  • Herman, G. R., and R. S. Schumacher, 2016: Using reforecasts to improve forecasting of fog and visibility for aviation. Wea. Forecasting, 31, 467482, https://doi.org/10.1175/WAF-D-15-0108.1.

    • Search Google Scholar
    • Export Citation
  • Herman, G. R., and R. S. Schumacher, 2018: Money doesn’t grow on trees, but forecasts do: Forecasting extreme precipitation with random forests. Mon. Wea. Rev., 146, 15711600, https://doi.org/10.1175/MWR-D-17-0250.1.

    • Search Google Scholar
    • Export Citation
  • Hill, A. J., and R. S. Schumacher, 2021: Forecasting excessive rainfall with random forests and a deterministic convection-allowing model. Wea. Forecasting, 36, 16931711, https://doi.org/10.1175/WAF-D-21-0026.1.

    • Search Google Scholar
    • Export Citation
  • Hill, A. J., G. R. Herman, and R. S. Schumacher, 2020: Forecasting severe weather with random forests. Mon. Wea. Rev., 148, 21352161, https://doi.org/10.1175/MWR-D-19-0344.1.

    • Search Google Scholar
    • Export Citation
  • Hill, A. J., C. C. Weiss, and D. C. Dowell, 2021: Influence of a portable near-surface observing network on experimental ensemble forecasts of deep convection hazards during VORTEX-SE. Wea. Forecasting, 36, 11411167, https://doi.org/10.1175/WAF-D-20-0237.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, W.-R., and A. H. Murphy, 1986: The attributes diagram: A geometrical framework for assessing the quality of probability forecasts. Int. J. Forecasting, 2, 285293, https://doi.org/10.1016/0169-2070(86)90048-8.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by longlived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, 61 pp., http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.

  • Jergensen, G. E., A. McGovern, R. Lagerquist, and T. Smith, 2020: Classifying convective storms using machine learning. Wea. Forecasting, 35, 537559, https://doi.org/10.1175/WAF-D-19-0170.1.

    • Search Google Scholar
    • Export Citation
  • Jirak, I. L., C. J. Melick, and S. J. Weiss, 2016: Comparison of the SPC storm-scale ensemble of opportunity to other convection-allowing ensembles for severe weather forecasting. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 102, https://ams.confex.com/ams/28SLS/webprogram/Paper300910.html.

  • Kain, J. S., S. R. Dembek, S. J. Weiss, J. L. Case, J. J. Levit, and R. A. Sobash, 2010: Extracting unique information from high-resolution forecast models: Monitoring selected fields and phenomena every time step. Wea. Forecasting, 25, 15361542, https://doi.org/10.1175/2010WAF2222430.1.

    • Search Google Scholar
    • Export Citation
  • Kalina, E. A., I. Jankov, T. Alcott, J. Olson, J. Beck, J. Berner, D. Dowell, and C. Alexander, 2021: A progress report on the development of the High-Resolution Rapid Refresh Ensemble. Wea. Forecasting, 36, 791804, https://doi.org/10.1175/WAF-D-20-0098.1.

    • Search Google Scholar
    • Export Citation
  • Lagerquist, R., A. McGovern, and T. Smith, 2017: Machine learning for real-time prediction of damaging straight-line convective wind. Wea. Forecasting, 32, 21752193, https://doi.org/10.1175/WAF-D-17-0038.1.

    • Search Google Scholar
    • Export Citation
  • Lagerquist, R., A. McGovern, C. R. Homeyer, D. J. Gagne, and T. Smith, 2020: Deep learning on three-dimensional multiscale data for next-hour tornado prediction. Mon. Wea. Rev., 148, 28372861, https://doi.org/10.1175/MWR-D-19-0372.1.

    • Search Google Scholar
    • Export Citation
  • Loken, E. D., A. J. Clark, A. McGovern, M. Flora, and K. Knopfmeier, 2019: Postprocessing next-day ensemble probabilistic precipitation forecasts using random forests. Wea. Forecasting, 34, 20172044, https://doi.org/10.1175/WAF-D-19-0109.1.

    • Search Google Scholar
    • Export Citation
  • Loken, E. D., A. J. Clark, and C. D. Karstens, 2020: Generating probabilistic next-day severe weather forecasts from convection-allowing ensembles using random forests. Wea. Forecasting, 35, 16051631, https://doi.org/10.1175/WAF-D-19-0258.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., 2010: On sedimentation and advection in multimoment bulk microphysics. J. Atmos. Sci., 67, 30843094, https://doi.org/10.1175/2010JAS3341.1.

    • Search Google Scholar
    • Export Citation
  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291303.

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Miller, W. J., and Coauthors, 2022: Exploring the usefulness of downscaling free forecasts from the Warn-on-Forecast System. Wea. Forecasting, 37, 181203, https://doi.org/10.1175/WAF-D-21-0079.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., R. D. Sharman, and W. Deierling, 2020: Aviation turbulence forecasting at upper levels with machine learning techniques based on regression trees. J. Appl. Meteor. Climatol., 59, 18831899, https://doi.org/10.1175/JAMC-D-20-0116.1.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1973: A new vector partition of the probability score. J. Appl. Meteor., 12, 595600, https://doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., 2000: Large-eddy simulation of radiation fog. Bound.-Layer Meteor., 94, 461493, https://doi.org/10.1023/A:1002490423389.

    • Search Google Scholar
    • Export Citation
  • Nakanish, M., 2001: Improvement of the Mellor-Yamada turbulence closure model based on large-eddy simulation data. Bound.-Layer Meteor., 99, 349378, https://doi.org/10.1023/A:1018915827400.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor-Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S.-Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, https://doi.org/10.1023/A:1022146015946.

    • Search Google Scholar
    • Export Citation
  • Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 28252830.

  • Platt, J. C., 1999: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers, A. J. Smola et al., Eds., MIT Press, 6174.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and Coauthors, 2017: Systematic comparison of convection-allowing models during the 2017 NOAA HWT Spring Forecasting Experiment. Wea. Forecasting, 34, 13951416, https://doi.org/10.1175/WAF-D-19-0056.1.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and Coauthors, 2020: Assessing systematic impacts of PBL schemes on storm evolution in the NOAA Warn-on-Forecast System. Mon. Wea. Rev., 148, 25672590, https://doi.org/10.1175/MWR-D-19-0389.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, B., B. T. Gallo, I. Jirak, A. J. Clark, D. C. Dowell, X. Wang, and Y. Wang, 2020: What does a convection-allowing ensemble of opportunity buy us in forecasting thunderstorms? Wea. Forecasting, 35, 22932316, https://doi.org/10.1175/WAF-D-20-0069.1.

    • Search Google Scholar
    • Export Citation
  • Rothfusz, L. P., R. Schneider, D. Novak, K. Klockow-McClain, A. E. Gerard, C. D. Karstens, G. J. Stumpf, and M. Smith, 2018: FACETs: A proposed next-generation paradigm for high-impact weather forecasting. Bull. Amer. Meteor. Soc., 99, 20252043, https://doi.org/10.1175/BAMS-D-16-0100.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., A. J. Hill, M. Klein, J. A. Nelson, M. J. Erickson, S. M. Trojniak, and G. R. Herman, 2021: From random forests to flood forecasts: A research to operations success story. Bull. Amer. Meteor. Soc., 102, E1742E1755, https://doi.org/10.1175/BAMS-D-20-0186.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., 145, 33973418, https://doi.org/10.1175/MWR-D-16-0400.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, M. L. Weisman, R. A. Sobash, K. R. Fossell, K. W. Manning, and S. B. Trier, 2015: A real-time convection-allowing ensemble prediction system initialized by mesoscale ensemble Kalman filter analyses. Wea. Forecasting, 30, 11581181, https://doi.org/10.1175/WAF-D-15-0013.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev., 125, 18701884, https://doi.org/10.1175/1520-0493(1997)125<1870:PODSMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., J. M. Brown, S. G. Benjamin, and D. Kim, 2000: Parameterization of cold-season processes in the MAPS land-surface scheme. J. Geophys. Res., 105, 40774086, https://doi.org/10.1029/1999JD901047.

    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., and J. S. Kain, 2017: Seasonal variations in severe weather forecast skill in an experimental convection-allowing model. Wea. Forecasting, 32, 18851902, https://doi.org/10.1175/WAF-D-17-0043.1.

    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., J. S. Kain, D. R. Bright, A. R. Dean, M. C. Coniglio, and S. J. Weiss, 2011: Probabilistic forecast guidance for severe thunderstorms based on the identification of extreme phenomena in convection-allowing model forecasts. Wea. Forecasting, 26, 714728, https://doi.org/10.1175/WAF-D-10-05046.1.

    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., C. S. Schwartz, G. S. Romine, K. R. Fossell, and M. L. Weisman, 2016a: Severe weather prediction using storm surrogates from an ensemble forecasting system. Wea. Forecasting, 31, 255271, https://doi.org/10.1175/WAF-D-15-0138.1.

    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., G. S. Romine, C. S. Schwartz, D. J. Gagne, and M. L. Weisman, 2016b: Explicit forecasts of low-level rotation from convection-allowing models for next-day tornado prediction. Wea. Forecasting, 31, 15911614, https://doi.org/10.1175/WAF-D-16-0073.1.

    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., C. S. Schwartz, G. S. Romine, and M. L. Weisman, 2019: Next-day prediction of tornadoes using convection-allowing models with 1-km horizontal grid spacing. Wea. Forecasting, 34, 11171135, https://doi.org/10.1175/WAF-D-19-0044.1.

    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., G. S. Romine, and C. S. Schwartz, 2020: A comparison of neural-network and surrogate-severe probabilistic convective hazard guidance derived from a convection-allowing model. Wea. Forecasting, 35, 19812000, https://doi.org/10.1175/WAF-D-20-0036.1.

    • Search Google Scholar
    • Export Citation
  • SPC, 2021: Severe weather event summaries: NWS local storm reports. Accessed 1 July 2019, https://www.spc.noaa.gov/climo/online/.

  • Stensrud, D. J., and Coauthors, 2009: Convective-scale Warn-on-Forecast System: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Verbout, S. M., H. E. Brooks, L. M. Leslie, and D. M. Schultz, 2006: Evolution of the U.S. tornado database: 1954–2003. Wea. Forecasting, 21, 8693, https://doi.org/10.1175/WAF910.1.

    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., S. L. Mullen, D. J. Stensrud, and H. E. Brooks, 2001: Evaluation of a short-range multimodel ensemble system. Mon. Wea. Rev., 129, 729747, https://doi.org/10.1175/1520-0493(2001)129<0729:EOASRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 648 pp.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 586 586 15
Full Text Views 350 350 5
PDF Downloads 399 399 5

Machine Learning–Derived Severe Weather Probabilities from a Warn-on-Forecast System

Adam J. ClarkaNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
bSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Adam J. Clark in
Current site
Google Scholar
PubMed
Close
and
Eric D. LokenaNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
cCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma

Search for other papers by Eric D. Loken in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Severe weather probabilities are derived from the Warn-on-Forecast System (WoFS) run by NOAA’s National Severe Storms Laboratory (NSSL) during spring 2018 using the random forest (RF) machine learning algorithm. Recent work has shown this method generates skillful and reliable forecasts when applied to convection-allowing model ensembles for the “Day 1” time range (i.e., 12–36-h lead times), but it has been tested in only one other study for lead times relevant to WoFS (e.g., 0–6 h). Thus, in this paper, various sets of WoFS predictors, which include both environment and storm-based fields, are input into a RF algorithm and trained using the occurrence of severe weather reports within 39 km of a point to produce severe weather probabilities at 0–3-h lead times. We analyze the skill and reliability of these forecasts, sensitivity to different sets of predictors, and avenues for further improvements. The RF algorithm produced very skillful and reliable severe weather probabilities and significantly outperformed baseline probabilities calculated by finding the best performing updraft helicity (UH) threshold and smoothing parameter. Experiments where different sets of predictors were used to derive RF probabilities revealed 1) storm attribute fields contributed significantly more skill than environmental fields, 2) 2–5 km AGL UH and maximum updraft speed were the best performing storm attribute fields, 3) the most skillful ensemble summary metric was a smoothed mean, and 4) the most skillful forecasts were obtained when smoothed UH from individual ensemble members were used as predictors.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Adam J. Clark, adam.clark@noaa.gov

Abstract

Severe weather probabilities are derived from the Warn-on-Forecast System (WoFS) run by NOAA’s National Severe Storms Laboratory (NSSL) during spring 2018 using the random forest (RF) machine learning algorithm. Recent work has shown this method generates skillful and reliable forecasts when applied to convection-allowing model ensembles for the “Day 1” time range (i.e., 12–36-h lead times), but it has been tested in only one other study for lead times relevant to WoFS (e.g., 0–6 h). Thus, in this paper, various sets of WoFS predictors, which include both environment and storm-based fields, are input into a RF algorithm and trained using the occurrence of severe weather reports within 39 km of a point to produce severe weather probabilities at 0–3-h lead times. We analyze the skill and reliability of these forecasts, sensitivity to different sets of predictors, and avenues for further improvements. The RF algorithm produced very skillful and reliable severe weather probabilities and significantly outperformed baseline probabilities calculated by finding the best performing updraft helicity (UH) threshold and smoothing parameter. Experiments where different sets of predictors were used to derive RF probabilities revealed 1) storm attribute fields contributed significantly more skill than environmental fields, 2) 2–5 km AGL UH and maximum updraft speed were the best performing storm attribute fields, 3) the most skillful ensemble summary metric was a smoothed mean, and 4) the most skillful forecasts were obtained when smoothed UH from individual ensemble members were used as predictors.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Adam J. Clark, adam.clark@noaa.gov
Save