• Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Grams, C. M., L. Magnusson, and E. Madonna, 2018: An atmospheric dynamics perspective on the amplification and propagation of forecast error in numerical weather prediction models: A case study. Quart. J. Roy. Meteor. Soc., 144, 25772591, https://doi.org/10.1002/qj.3353.

    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., and Coauthors, 2014: The Navy Global Environmental Model. Oceanography, 27, 116125, https://doi.org/10.5670/oceanog.2014.73.

    • Search Google Scholar
    • Export Citation
  • Kimoto, M., and M. Ghil, 1993: Multiple flow regimes in the Northern Hemisphere winter. Part I: Methodology and hemispheric regimes. J. Atmos. Sci., 50, 2625–2644, https://doi.org/10.1175/1520-0469(1993)050<2625:MFRITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and Coauthors, 2003: Improved skill for the anomaly correlation of geopotential heights at 500 hPa. Mon. Wea. Rev., 131, 10821102, https://doi.org/10.1175/1520-0493(2003)131<1082:ISFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, V. K., E. Maddy, J. C. Alpert, and S. A. Boukabara, 2016 : Global forecast dropout prediction tool in support of the NCEP Model Evaluation Group (MEG)—A collaborative project between JCSDA/NESDIS and NWS. 20th Conf. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), New Orleans, LA, Amer. Meteor. Soc., 6.3, https://ams.confex.com/ams/96Annual/webprogram/Paper288630.html.

  • Langland, R. H., and R. N. Maue, 2012: Recent northern hemisphere mid-latitude medium-range deterministic forecast skill. Tellus, 64 A, 17531, https://doi.org/10.3402/tellusa.v64i0.17531.

    • Search Google Scholar
    • Export Citation
  • Lillo, S. P., and D. B. Parsons, 2017: Investigating the dynamics of error growth in ECMWF medium-range forecast busts. Quart. J. Roy. Meteor. Soc., 143, 12111226, https://doi.org/10.1002/qj.2938.

    • Search Google Scholar
    • Export Citation
  • Lin, H., N. Gagnon, S. Beauregard, R. Muncaster, M. Markovic, B. Denis, and M. Charron, 2016: GEPS-based monthly prediction at the Canadian meteorological Centre. Mon. Wea. Rev., 144, 48674883, https://doi.org/10.1175/MWR-D-16-0138.1.

    • Search Google Scholar
    • Export Citation
  • Magnusson, L., 2017: Diagnostic methods for understanding the origin of forecast errors. Quart. J. Roy. Meteor. Soc., 143, 21292142, https://doi.org/10.1002/qj.3072.

    • Search Google Scholar
    • Export Citation
  • Matsueda, M., and T. N. Palmer, 2018: Estimates of flow-dependent predictability of wintertime Euro-Atlantic weather regimes in medium-range forecasts. Quart. J. Roy. Meteor. Soc., 144, 10121027, https://doi.org/10.1002/qj.3265.

    • Search Google Scholar
    • Export Citation
  • McLay, J. G., C. H. Bishop, and C. A. Reynolds, 2008: Evaluation of the ensemble transform analysis perturbation scheme at NRL. Mon. Wea. Rev., 136, 10931108, https://doi.org/10.1175/2007MWR2010.1.

    • Search Google Scholar
    • Export Citation
  • McLay, J. G., C. H. Bishop, and C. A. Reynolds, 2010: A local formulation of the ensemble transform (ET) analysis perturbation scheme. Wea. Forecasting, 25, 985993, https://doi.org/10.1175/2010WAF2222359.1.

    • Search Google Scholar
    • Export Citation
  • McLay, J. G., M. K. Flatau, C. A. Reynolds, J. Cummings, T. Hogan, and P. J. Flatau, 2012: Inclusion of sea-surface temperature variation in the U.S. Navy ensemble-transform global ensemble prediction system. J. Geophys. Res., 117, D19120, https://doi.org/10.1029/2011JD016937.

    • Search Google Scholar
    • Export Citation
  • McLay, J. G., D. Hodyss, and C. A. Reynolds, 2020: Favoured cycles and other features of anomalous forecast uncertainty as revealed by time series of TIGGE data. Quart. J. Roy. Meteor. Soc., 146, 870888, https://doi.org/10.1002/qj.3713.

    • Search Google Scholar
    • Export Citation
  • Minami, A., and Y. Takaya, 2020: Enhanced Northern Hemisphere correlation skill of subseasonal predictions in the strong negative phase of the Arctic oscillation. J. Geophys. Res. Atmos., 125, e2019JD031268, https://doi.org/10.1029/2019JD031268.

  • Parsons, D. B., S. P. Lillo, C. P. Rattray, P. Bechtold, M. J. Rodwell, and C. M. Bruce, 2019: The role of continental mesoscale convective systems in forecast busts within global weather prediction systems. Atmosphere, 10, 681, https://doi.org/10.3390/atmos10110681.

    • Search Google Scholar
    • Export Citation
  • Reinhold, B. B., and R. T. Pierrehumbert, 1982: Dynamics of weather regimes: Quasi-stationary waves and blocking. Mon. Wea. Rev., 110, 11051145, https://doi.org/10.1175/1520-0493(1982)110<1105:DOWRQS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2005: The THORPEX Interactive Grand Global Ensemble (TIGGE) . Geophysical Research Abstracts, Vol. 7, Abstract 02815, http://meetings.copernicus.org/www.cosis.net/abstracts/EGU05/02815/EGU05-J-02815.pdf.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and Coauthors, 2013: Characteristics of occasional poor medium-range weather forecasts for Europe. Bull. Amer. Meteor. Soc., 94, 13931405, https://doi.org/10.1175/BAMS-D-12-00099.1.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., D. S. Richardson, D. B. Parsons, and H. Wernli, 2018: Flow-dependent reliability: A path to more skillful ensemble forecasts. Bull. Amer. Meteor. Soc., 99, 10151026, https://doi.org/10.1175/BAMS-D-17-0027.1.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102, https://doi.org/10.1256/qj.04.106.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Uno, F., H. Ohtake, M. Matsueda, and Y. Yamada, 2018: A diagnostic for advance detection of forecast busts of regional surface solar radiation using multi-center grand ensemble forecasts. Sol. Energy, 162, 196204, https://doi.org/10.1016/j.solener.2017.12.060.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006 : Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 648 pp.

  • Yamagami, A., and M. Matsueda, 2021: Statistical characteristics of arctic forecast busts and their relationship to arctic weather patterns in summer. Atmos. Sci. Lett., 22, e1038, https://doi.org/10.1002/asl.1038.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., Y. Zhu, D. Hou, Y. Luo, J. Peng, and R. Wobus, 2017: Performance of the new NCEP global ensemble forecast system in a parallel experiment. Wea. Forecasting, 32, 19892004, https://doi.org/10.1175/WAF-D-17-0023.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 417 417 9
Full Text Views 98 98 0
PDF Downloads 101 101 0

Forecast Dropouts in the NAVGEM Model: Characterization with Respect to Other Models, Large-Scale Indices, and Ensemble Forecasts

Justin G. McLayaNaval Research Laboratory, Monterey, California

Search for other papers by Justin G. McLay in
Current site
Google Scholar
PubMed
Close
and
Elizabeth SatterfieldaNaval Research Laboratory, Monterey, California

Search for other papers by Elizabeth Satterfield in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A forecast “bust” or “dropout” can be defined as an intermittent but significant loss of model forecast performance. Deterministic forecast dropouts are typically defined in terms of the 500-hPa geopotential height (Φ500) anomaly correlation coefficient (ACC) in the Northern Hemisphere (NH) dropping below a predefined threshold. This study first presents a multimodel comparison of dropouts in the Navy Global Environmental Model (NAVGEM) deterministic forecast with the ensemble control members from the Environment and Climate Change Canada (ECCC) Global Ensemble Prediction System (GEPS) and the National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS). Then, the relationship between dropouts and large-scale pattern variability is investigated, focusing on the temporal variability and correlation of flow indices surrounding dropout events. Finally, three severe dropout events are examined from an ensemble perspective. The main findings of this work are the following: 1) forecast dropouts exhibit some relation between models; 2) although forecast dropouts do not have a single cause, the most severe dropouts in NAVGEM can be linked to specific behavior of the large-scale flow indices, that is, they tend to follow periods of rapidly escalating volatility of the flow indices, and they tend to occur during intervals where the AO and Pacific North American (PNA) indices are exhibiting unusually strong interdependence; and 3) for the dropout events examined from an ensemble perspective, the NAVGEM ensemble spread does not provide a strong signal of elevated potential for very large forecast errors.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Justin McLay, Justin.mclay@nrlmry.navy.mil

Abstract

A forecast “bust” or “dropout” can be defined as an intermittent but significant loss of model forecast performance. Deterministic forecast dropouts are typically defined in terms of the 500-hPa geopotential height (Φ500) anomaly correlation coefficient (ACC) in the Northern Hemisphere (NH) dropping below a predefined threshold. This study first presents a multimodel comparison of dropouts in the Navy Global Environmental Model (NAVGEM) deterministic forecast with the ensemble control members from the Environment and Climate Change Canada (ECCC) Global Ensemble Prediction System (GEPS) and the National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS). Then, the relationship between dropouts and large-scale pattern variability is investigated, focusing on the temporal variability and correlation of flow indices surrounding dropout events. Finally, three severe dropout events are examined from an ensemble perspective. The main findings of this work are the following: 1) forecast dropouts exhibit some relation between models; 2) although forecast dropouts do not have a single cause, the most severe dropouts in NAVGEM can be linked to specific behavior of the large-scale flow indices, that is, they tend to follow periods of rapidly escalating volatility of the flow indices, and they tend to occur during intervals where the AO and Pacific North American (PNA) indices are exhibiting unusually strong interdependence; and 3) for the dropout events examined from an ensemble perspective, the NAVGEM ensemble spread does not provide a strong signal of elevated potential for very large forecast errors.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Justin McLay, Justin.mclay@nrlmry.navy.mil
Save