• Anderson, J. L., and N. Collins, 2007: Scalable implementations of ensemble filter algorithms for data assimilation. J. Atmos. Oceanic Technol., 24, 14521463, https://doi.org/10.1175/JTECH2049.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, https://doi.org/10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Burghardt, B. J., C. Evans, and P. J. Roebber, 2014: Assessing the predictability of convection initiation in the high plains using an object-based approach. Wea. Forecasting, 29, 403418, https://doi.org/10.1175/WAF-D-13-00089.1.

    • Search Google Scholar
    • Export Citation
  • Burlingame, B. M., C. Evans, and P. J. Roebber, 2017: The influence of PBL parameterization on the practical predictability of convection initiation during the Mesoscale Predictability Experiment (MPEX). Wea. Forecasting, 32, 11611183, https://doi.org/10.1175/WAF-D-16-0174.1.

    • Search Google Scholar
    • Export Citation
  • Bytheway, J. L., and C. D. Kummerow, 2015: Toward an object-based assessment of high-resolution forecasts of long-lived convective precipitation in the central U.S. J. Adv. Model. Earth Syst., 7, 12481264, https://doi.org/10.1002/2015MS000497.

    • Search Google Scholar
    • Export Citation
  • Cai, H., and R. E. Dumais Jr., 2015: Object-based evaluation of a numerical weather prediction model’s performance through storm characteristic analysis. Wea. Forecasting, 30, 14511468, https://doi.org/10.1175/WAF-D-15-0008.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and E. D. Loken, 2022: Machine learning–derived severe weather probabilities from a Warn-on-Forecast system. Wea. Forecasting, 37, 17211740, https://doi.org/10.1175/WAF-D-22-0056.1.

  • Clark, A. J., J. Gao, P. T. Marsh, T. Smith, J. S. Kain, J. Correia Jr., M. Xue, and F. Kong, 2013: Tornado pathlength forecasts from 2010 to 2011 using ensemble updraft helicity. Wea. Forecasting, 28, 387407, https://doi.org/10.1175/WAF-D-12-00038.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., R. G. Bullock, T. L. Jensen, M. Xue, and F. Kong, 2014: Application of object-based time-domain diagnostics for tracking precipitation systems in convection-allowing models. Wea. Forecasting, 29, 517542, https://doi.org/10.1175/WAF-D-13-00098.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2020: A real-time, simulated forecasting experiment for advancing the prediction of hazardous convective weather. Bull. Amer. Meteor. Soc., 101, E2022E2024, https://doi.org/10.1175/BAMS-D-19-0298.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2021: A real-time, virtual spring forecasting experiment to advance severe weather prediction. Bull. Amer. Meteor. Soc., 102, E814E816, https://doi.org/10.1175/BAMS-D-20-0268.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., B. G. Brown, and R. G. Bullock, 2006a: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, https://doi.org/10.1175/MWR3145.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., B. G. Brown, and R. G. Bullock, 2006b: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Wea. Rev., 134, 17851795, https://doi.org/10.1175/MWR3146.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., B. G. Brown, R. Bullock, and J. Halley-Gotway, 2009: The method for object-based diagnostic evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC Spring Program. Wea. Forecasting, 24, 12521267, https://doi.org/10.1175/2009WAF2222241.1.

    • Search Google Scholar
    • Export Citation
  • Dowell, D., and Coauthors, 2016: Development of a High-Resolution Rapid Refresh ensemble (HRRRE) for severe weather forecasting. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 8B.2, https://ams.confex.com/ams/28SLS/webprogram/Paper301555.html.

  • Duda, J. D., and D. D. Turner, 2021: Large-sample application of radar reflectivity object-based verification to evaluate HRRR warm-season forecasts. Wea. Forecasting, 36, 805821, https://doi.org/10.1175/WAF-D-20-0203.1.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and W. A. Gallus Jr., 2009: Toward better understanding of the contiguous rain area (CRA) method for spatial forecast verification. Wea. Forecasting, 24, 14011415, https://doi.org/10.1175/2009WAF2222252.1.

    • Search Google Scholar
    • Export Citation
  • Flora, M. L., C. K. Potvin, and L. J. Wicker, 2018: Practical predictability of supercells: Exploring ensemble forecast sensitivity to initial condition spread. Mon. Wea. Rev., 146, 23612379, https://doi.org/10.1175/MWR-D-17-0374.1.

    • Search Google Scholar
    • Export Citation
  • Flora, M. L., P. S. Skinner, C. K. Potvin, A. E. Reinhart, T. A. Jones, N. Yussouf, and K. H. Knopfmeier, 2019: Object-based verification of short-term, storm-scale probabilistic mesocyclone guidance from an experimental Warn-on-Forecast System. Wea. Forecasting, 34, 17211739, https://doi.org/10.1175/WAF-D-19-0094.1.

    • Search Google Scholar
    • Export Citation
  • Flora, M. L., C. K. Potvin, P. S. Skinner, S. Handler, and A. McGovern, 2021: Using machine learning to generate storm-scale probabilistic guidance of severe weather hazards in the Warn-on-Forecast System. Mon. Wea. Rev., 149, 15351557, https://doi.org/10.1175/MWR-D-20-0194.1.

    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., and Coauthors, 2017: Breaking new ground in severe weather prediction: The 2015 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Wea. Forecasting, 32, 15411568, https://doi.org/10.1175/WAF-D-16-0178.1.

    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., and Coauthors, 2022: Exploring the watch-to-warning space: Experimental outlook performance during the 2019 Spring Forecasting Experiment in NOAA’s Hazardous Weather Testbed. Wea. Forecasting, 37, 617637, https://doi.org/10.1175/WAF-D-21-0171.1.

    • Search Google Scholar
    • Export Citation
  • Gilleland, E., D. Ahijevych, B. G. Brown, and E. E. Ebert, 2009: Intercomparison of spatial forecast verification methods. Wea. Forecasting, 24, 14161430, https://doi.org/10.1175/2009WAF2222269.1.

    • Search Google Scholar
    • Export Citation
  • Griffin, S. M., J. A. Otkin, C. M. Rozoff, J. M. Sieglaff, L. M. Cronce, C. R. Alexander, T. L. Jensen, and J. K. Wolff, 2017: Seasonal analysis of cloud objects in the High-Resolution Rapid Refresh (HRRR) model using object-based verification. J. Appl. Meteor. Climatol., 56, 23172334, https://doi.org/10.1175/JAMC-D-17-0004.1.

    • Search Google Scholar
    • Export Citation
  • Griffin, S. M., J. A. Otkin, S. E. Nebuda, T. L. Jensen, P. S. Skinner, E. Gilleland, T. A. Supinie, and M. Xue, 2021: Evaluating the impact of planetary boundary layer, land surface model, and microphysics parameterization schemes on cold cloud objects in simulated GOES-16 brightness temperatures. J. Geophys. Res. Atmos., 126, e2021JD034709, https://doi.org/10.1029/2021JD034709.

  • Hewson, T. D., and H. A. Titley, 2010: Objective identification, typing and tracking of the complete life-cycles of cyclonic features at high spatial resolution. Meteor. Appl., 17, 355381, https://doi.org/10.1002/met.204.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 44894532, https://doi.org/10.1175/MWR-D-15-0440.1.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y., A. J. Clark, V. Lakshmanan, and S. E. Koch, 2015: Improved nowcasts by blending extrapolation and model forecasts. Wea. Forecasting, 30, 12011217, https://doi.org/10.1175/WAF-D-15-0057.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, F. Kong, and M. Xue, 2013: Object-based evaluation of the impact of horizontal grid spacing on convection-allowing forecasts. Mon. Wea. Rev., 141, 34133425, https://doi.org/10.1175/MWR-D-13-00027.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, Y. Wang, A. Reinhart, A. J. Clark, and I. L. Jirak, 2020: Neighborhood- and object-based probabilistic verification of the OU MAP ensemble forecasts during 2017 and 2018 Hazardous Weather Testbeds. Wea. Forecasting, 35, 169191, https://doi.org/10.1175/WAF-D-19-0060.1.

  • Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikondo, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast System. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297327, https://doi.org/10.1175/WAF-D-15-0107.1.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., X. Wang, P. Skinner, A. Johnson, and Y. Wang, 2018: Assimilation of GOES-13 imager clear-sky water vapor (6.5 μm) radiances into a Warn-on-Forecast System. Mon. Wea. Rev., 146, 10771107, https://doi.org/10.1175/MWR-D-17-0280.1.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and Coauthors, 2020: Assimilation of GOES-16 radiances and retrievals into the Warn-on-Forecast system. Mon. Wea. Rev., 148, 18291859, https://doi.org/10.1175/MWR-D-19-0379.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 12131225, https://doi.org/10.1175/BAMS-D-11-00264.1.

    • Search Google Scholar
    • Export Citation
  • Kerr, C. A., L. J. Wicker, and P. S. Skinner, 2021: Updraft-based adaptive assimilation of radial velocity observations in a Warn-on-Forecast System. Wea. Forecasting, 36, 2137, https://doi.org/10.1175/WAF-D-19-0251.1.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP global data assimilation system. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Miller, W. J. S., and Coauthors, 2022: Exploring the usefulness of downscaling free forecasts from the Warn-on-Forecast System. Wea. Forecasting, 37, 181203, https://doi.org/10.1175/WAF-D-21-0079.1.

    • Search Google Scholar
    • Export Citation
  • Mittermaier, M. P., and R. Bullock, 2013: Using MODE to explore the spatial and temporal characteristics of cloud cover forecasts from high-resolution NWP models. Meteor. Appl., 20, 187196, https://doi.org/10.1002/met.1393.

    • Search Google Scholar
    • Export Citation
  • Mittermaier, M. P., R. North, A. Semple, and R. Bullock, 2016: Feature-based diagnostic evaluation of global NWP forecasts. Mon. Wea. Rev., 144, 38713893, https://doi.org/10.1175/MWR-D-15-0167.1.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., J. A. Grim, and M. Steiner, 2015: Assessment of the High-Resolution Rapid Refresh model’s ability to predict mesoscale convective systems using object-based evaluation. Wea. Forecasting, 30, 892913, https://doi.org/10.1175/WAF-D-14-00118.1.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and Coauthors, 2019: Systematic comparison of convection-allowing models during the 2017 NOAA HWT Spring Forecasting Experiment. Wea. Forecasting, 34, 13951416, https://doi.org/10.1175/WAF-D-19-0056.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, K. R. Fossell, R. A. Sobash, and M. L. Weisman, 2017: Toward 1-km ensemble forecasts over large domains. Mon. Wea. Rev., 145, 29432969, https://doi.org/10.1175/MWR-D-16-0410.1.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., L. J. Wicker, D. M. Wheatley, and K. H. Knopfmeier, 2016: Application of two spatial verification methods to ensemble forecasts of low-level rotation. Wea. Forecasting, 31, 713735, https://doi.org/10.1175/WAF-D-15-0129.1.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., and Coauthors, 2018: Object-based verification of a prototype Warn-on-Forecast System. Wea. Forecasting, 33, 12251250, https://doi.org/10.1175/WAF-D-18-0020.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., C. S. Schwartz, G. S. Romine, K. R. Fossell, and M. L. Weisman, 2016: Severe weather prediction using storm surrogates from an ensemble forecasting system. Wea. Forecasting, 31, 255271, https://doi.org/10.1175/WAF-D-15-0138.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale Warn-on-Forecast System: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2013: Progress and challenges with Warn-on-Forecast. Atmos. Res., 123, 216, https://doi.org/10.1016/j.atmosres.2012.04.004.

    • Search Google Scholar
    • Export Citation
  • Stratman, D. R., and K. A. Brewster, 2017: Sensitivities of 1-km forecasts of 24 May 2011 tornadic supercells to microphysics parameterizations. Mon. Wea. Rev., 145, 26972721, https://doi.org/10.1175/MWR-D-16-0282.1.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807, https://doi.org/10.1175/MWR2898.1.

    • Search Google Scholar
    • Export Citation
  • Trojniak, S., and B. Albright, 2019: 2019 flash flood and intense rainfall experiment: Findings and results. Weather Prediction Center Tech. Rep., 123 pp., https://www.wpc.ncep.noaa.gov/hmt/Final_Report_2019_FFaIR.pdf.

  • van der Walt, S., J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, 2014: Scikit-image: Image processing in Python. PeerJ, 2, e453, https://doi.org/10.7717/peerj.453.

    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast System. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, K. A., B. T. Gallo, P. Skinner, A. Clark, P. Heinselman, and J. J. Choate, 2021: Analysis of end user access of Warn-on-Forecast guidance products during an experimental forecasting task. Wea. Climate Soc., 13, 859874, https://doi.org/10.1175/WCAS-D-20-0175.1.

    • Search Google Scholar
    • Export Citation
  • Wolff, J. K., M. Harrold, T. Fowler, J. H. Gotway, L. Nance, and B. G. Brown, 2014: Beyond the basics: Evaluating model-based precipitation forecasts using traditional, spatial, and object-based methods. Wea. Forecasting, 29, 14511472, https://doi.org/10.1175/WAF-D-13-00135.1.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., and K. H. Knopfmeier, 2019: Application of the warn-on-forecast system for flash-flood-producing heavy convective rainfall events. Quart. J. Roy. Meteor. Soc., 145, 23852403, https://doi.org/10.1002/qj.3568.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 494 494 12
Full Text Views 299 299 14
PDF Downloads 261 261 13

Quantification of NSSL Warn-on-Forecast System Accuracy by Storm Age Using Object-Based Verification

Jorge E. GuerraaCooperative Institute for Severe and High-Impact Weather Research and Operations, Norman, Oklahoma

Search for other papers by Jorge E. Guerra in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8974-1080
,
Patrick S. SkinneraCooperative Institute for Severe and High-Impact Weather Research and Operations, Norman, Oklahoma

Search for other papers by Patrick S. Skinner in
Current site
Google Scholar
PubMed
Close
,
Adam ClarkaCooperative Institute for Severe and High-Impact Weather Research and Operations, Norman, Oklahoma

Search for other papers by Adam Clark in
Current site
Google Scholar
PubMed
Close
,
Montgomery FloraaCooperative Institute for Severe and High-Impact Weather Research and Operations, Norman, Oklahoma

Search for other papers by Montgomery Flora in
Current site
Google Scholar
PubMed
Close
,
Brian MatillaaCooperative Institute for Severe and High-Impact Weather Research and Operations, Norman, Oklahoma

Search for other papers by Brian Matilla in
Current site
Google Scholar
PubMed
Close
,
Kent KnopfmeieraCooperative Institute for Severe and High-Impact Weather Research and Operations, Norman, Oklahoma

Search for other papers by Kent Knopfmeier in
Current site
Google Scholar
PubMed
Close
, and
Anthony E. ReinhartaCooperative Institute for Severe and High-Impact Weather Research and Operations, Norman, Oklahoma

Search for other papers by Anthony E. Reinhart in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The National Severe Storm Laboratory’s Warn-on-Forecast System (WoFS) is a convection-allowing ensemble with rapidly cycled data assimilation (DA) of various satellite and radar datasets designed for prediction at 0–6-h lead time of hazardous weather. With the focus on short lead times, WoFS predictive accuracy is strongly dependent on its ability to accurately initialize and depict the evolution of ongoing storms. Since it takes multiple DA cycles to fully “spin up” ongoing storms, predictive skill is likely a function of storm age at the time of model initialization, meaning that older storms that have been through several DA cycles will be forecast with greater accuracy than newer storms that initiate just before model initialization or at any point after. To quantify this relationship, we apply an object-based spatial tracking and verification approach to map differences in the probability of detection (POD), in space–time, of predicted storm objects from WoFS with respect to Multi-Radar Multi-Sensor (MRMS) reflectivity objects. Object-tracking/matching statistics are computed for all suitable and available WoFS cases from 2017 to 2021. Our results indicate sharply increasing POD with increasing storm age for lead times within 3 h. PODs were about 0.3 for storm objects that emerge 2–3 h after model initialization, while for storm objects that were at least an hour old at the time of model initialization by DA, PODs ranged from around 0.7 to 0.9 depending on the lead time. These results should aid in forecaster interpretation of WoFS, as well as guide WoFS developers on improving the model and DA system.

Significance Statement

The Warn-on-Forecast System (WoFS) is a collection of weather models designed to predict individual thunderstorms. Before the models can predict storms, they must ingest radar and satellite observations to put existing storms into the models. Because storms develop at different times, more observations will exist for some storms in the model domain than others, which results in WoFS forecasts with different accuracy for different storms. This paper estimates the differences in accuracy for storms that have existed for a long time and those that have not by tracking observed and predicted storms. We find that the likelihood of WoFS accurately predicting a thunderstorm nearly doubles if the storm has existed for over an hour prior to the forecast. Understanding this relationship between storm age and forecast accuracy will help forecasters better use WoFS predictions and guide future research to improve WoFS forecasts.

Clark’s current affiliation: National Severe Storms Laboratory, Norman, Oklahoma.

Knopfmeier’s current affiliation: National Severe Storms Laboratory, Norman, Oklahoma.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jorge E. Guerra, jorge.guerra@noaa.gov

Abstract

The National Severe Storm Laboratory’s Warn-on-Forecast System (WoFS) is a convection-allowing ensemble with rapidly cycled data assimilation (DA) of various satellite and radar datasets designed for prediction at 0–6-h lead time of hazardous weather. With the focus on short lead times, WoFS predictive accuracy is strongly dependent on its ability to accurately initialize and depict the evolution of ongoing storms. Since it takes multiple DA cycles to fully “spin up” ongoing storms, predictive skill is likely a function of storm age at the time of model initialization, meaning that older storms that have been through several DA cycles will be forecast with greater accuracy than newer storms that initiate just before model initialization or at any point after. To quantify this relationship, we apply an object-based spatial tracking and verification approach to map differences in the probability of detection (POD), in space–time, of predicted storm objects from WoFS with respect to Multi-Radar Multi-Sensor (MRMS) reflectivity objects. Object-tracking/matching statistics are computed for all suitable and available WoFS cases from 2017 to 2021. Our results indicate sharply increasing POD with increasing storm age for lead times within 3 h. PODs were about 0.3 for storm objects that emerge 2–3 h after model initialization, while for storm objects that were at least an hour old at the time of model initialization by DA, PODs ranged from around 0.7 to 0.9 depending on the lead time. These results should aid in forecaster interpretation of WoFS, as well as guide WoFS developers on improving the model and DA system.

Significance Statement

The Warn-on-Forecast System (WoFS) is a collection of weather models designed to predict individual thunderstorms. Before the models can predict storms, they must ingest radar and satellite observations to put existing storms into the models. Because storms develop at different times, more observations will exist for some storms in the model domain than others, which results in WoFS forecasts with different accuracy for different storms. This paper estimates the differences in accuracy for storms that have existed for a long time and those that have not by tracking observed and predicted storms. We find that the likelihood of WoFS accurately predicting a thunderstorm nearly doubles if the storm has existed for over an hour prior to the forecast. Understanding this relationship between storm age and forecast accuracy will help forecasters better use WoFS predictions and guide future research to improve WoFS forecasts.

Clark’s current affiliation: National Severe Storms Laboratory, Norman, Oklahoma.

Knopfmeier’s current affiliation: National Severe Storms Laboratory, Norman, Oklahoma.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jorge E. Guerra, jorge.guerra@noaa.gov
Save