• Angevine, W. M., J. Olson, J. Kenyon, W. I. Gustafson Jr., S. Endo, K. Suselj, and D. D. Turner, 2018: Shallow cumulus in WRF parameterizations evaluated against LASSO large-eddy simulations. Mon. Wea. Rev., 146, 43034322, https://doi.org/10.1175/MWR-D-18-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ball, J. T., I. E. Woodrow, and J. A. Berry, 1987: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Process in Photosynthesis Research, J. Biggins, Ed., Springer, 221224, https://doi.org/10.1007/978-94-017-0519-6_48.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthlott, C., and C. Hoose, 2015: Spatial and temporal variability of clouds and precipitation over Germany: Multiscale simulations across the “gray zone.” Atmos. Chem. Phys., 15, 12 36112 384, https://doi.org/10.5194/acp-15-12361-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bélair, S., J. Mailhot, C. Girard, and P. Vaillancourt, 2004: Boundary layer and shallow cumulus clouds in a medium-range forecast of a large-scale weather system. Mon. Wea. Rev., 133, 19381960, https://doi.org/10.1175/MWR2958.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., K. Findell, B. R. Lintner, P. Gentine, and C. Kerr, 2013: Precipitation sensitivity to surface heat fluxes over North America in reanalysis and model data. J. Hydrometeor., 14, 722743, https://doi.org/10.1175/JHM-D-12-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhowmick, M., and D. J. Parker, 2018: Analytical solution to a thermodynamic model for the sensitivity of afternoon deep convective initiation to the surface Bowen ratio. Quart. J. Roy. Meteor. Soc., 144, 22162229, https://doi.org/10.1002/qj.3340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaboureau, J. P., and P. Bechtold, 2002: A simple cloud parameterization derived from cloud resolving model data: Diagnostic and prognostic applications. J. Atmos. Sci., 59, 23622372, https://doi.org/10.1175/1520-0469(2002)059<2362:ASCPDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaboureau, J. P., and P. Bechtold, 2005: Statistical representation of clouds in a regional model and the impact on the diurnal cycle of convection during Tropical Convection, Cirrus and Nitrogen Oxides (TROCCINOX). J. Geophys. Res., 110, D17103, https://doi.org/10.1029/2004JD005645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, J., 2010: GOES-R ABI Level 1B Solar Channel Data Distribution Study: Analysis of alternatives for utilization of radiance and reflectance factor instrument data. NOAA/NESDIS, 63 pp.

    • Search Google Scholar
    • Export Citation
  • Cosma, S., E. Richard, and F. Miniscloux, 2002: The role of small-scale orographic features in the spatial distribution of precipitation. Quart. J. Roy. Meteor. Soc., 128, 7592, https://doi.org/10.1256/00359000260498798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cutrim, E., D. W. Martin, and R. Rabin, 1995: Enhancement of cumulus clouds over deforested lands in Amazonia. Bull. Amer. Meteor. Soc., 76, 18011805, https://doi.org/10.1175/1520-0477(1995)076<1801:EOCCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efstathiou, G., N. Zoumakis, D. Melas, C. Lolis, and P. Kassomenos, 2013: Sensitivity of WRF to boundary layer parameterizations in simulating a heavy rainfall event using different microphysical schemes: Effect on large-scale processes. Atmos. Res., 132–133, 125143, https://doi.org/10.1016/j.atmosres.2013.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freedman, J. M., and D. R. Fitzjarrald, 2001: Postfrontal airmass modification. J. Hydrometeor., 2, 419437, https://doi.org/10.1175/1525-7541(2001)002<0419:PAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freedman, J. M., D. R. Fitzjarrald, K. E. Moore, and R. K. Sakai, 2001: Boundary layer clouds and vegetation–atmosphere feedbacks. J. Climate, 14, 180197, https://doi.org/10.1175/1520-0442(2001)013<0180:BLCAVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuhrer, O., and C. Schär, 2007: Dynamics of orographically triggered banded convection in sheared moist orographic flows. J. Atmos. Sci., 64, 35423561, https://doi.org/10.1175/JAS4024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., D. J. Parker, C. M. Taylor, C. E. Reeves, and J. G. Murphy, 2010: Impact of mesoscale vegetation heterogeneities on the dynamical and thermodynamic properties of the planetary boundary layer. J. Geophys. Res., 115, D03102, https://doi.org/10.1029/2009JD012811.

    • Search Google Scholar
    • Export Citation
  • Guillod, B. P., and Coauthors, 2014: Land-surface controls on afternoon precipitation diagnosed from observational data: Uncertainties and confounding factors. Atmos. Chem. Phys., 14, 83438367, https://doi.org/10.5194/acp-14-8343-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hillger, D. W., and T. Schmit, 2004: Quantization noise for GOES-R ABI bands. Proc. 13th Conf. on Satellite Meteorology and Oceanography, Norfolk, VA, Amer. Meteor. Soc., P1.7, https://ams.confex.com/ams/13SATMET/webprogram/Paper78984.html.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z., 2001: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Jarvis, P. G., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc., B273, 593610, https://doi.org/10.1098/rstb.1976.0035.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., 2011: Cloud-resolving simulations of deep convection over a heated mountain. J. Atmos. Sci., 68, 361378, https://doi.org/10.1175/2010JAS3642.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamraoui, F., J. F. Booth, C. M. Naud, M. P. Jensen, and K. L. Johnson, 2019: The interaction between boundary layer and convection schemes in a WRF simulation of post-cold frontal clouds over the ARM East North Atlantic site. J. Geophys. Res. Atmos., 124, 46994721, https://doi.org/10.1029/2018JD029370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langhans, W., J. Schmidli, and C. Schär, 2012: Bulk convergence of cloud-resolving simulations of moist convection over complex terrain. J. Atmos. Sci., 69, 22072228, https://doi.org/10.1175/JAS-D-11-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lv, M., Z. Xu, and Z. L. Yang, 2020: Cloud resolving WRF simulations of precipitation and soil moisture over the central Tibetan Plateau: An assessment of various physics options. Earth Space Sci., 7, e2019EA000865, https://doi.org/10.1029/2019EA000865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, N., G.-Y. Niu, Y. Xia, X. Cai, Y. Zhang, Y. Ma, and Y. Fang, 2017: A systematic evaluation of Noah-MP in simulating land-atmosphere energy, water, and carbon exchanges over the continental United States. J. Geophys. Res. Atmos., 122, 12 24512 268, https://doi.org/10.1002/2017JD027597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manning, J., and R. Baldick, 2019: Forecasting short-term dynamics of shallow cumuli using dynamic mode decomposition. J. Renew. Sustain. Energy, 11, 053704, https://doi.org/10.1063/1.5125927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. D., M. A. Rogers, J. M. Haynes, M. Sengupta, and A. K. Heidinger, 2017: Short-term solar irradiance forecasting via satellite/model coupling. Sol. Energy, 168, 102117, https://doi.org/10.1016/j.solener.2017.11.049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milovac, J., K. Warrach-Sagi, A. Behrendt, F. Späth, J. Ingwersen, and V. Wulfmeyer, 2016: Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption lidar measurements. J. Geophys. Res. Atmos., 121, 624649, https://doi.org/10.1002/2015JD023927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, L., D. R. Fitzjarrald, Y. Du, B. E. J. Rose, J. Hong, and Q. Min, 2021: Exploring sources of surface bias in HRRR using New York State Mesonet. J. Geophys. Res. Atmos., 126, e2021JD034989, https://doi.org/10.1029/2021JD034989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q., 2005: Impacts of aerosols and clouds on forest-atmosphere carbon exchange. J. Geophys. Res., 110, D06203, https://doi.org/10.1029/2004JD004858.

    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, J. Bacmeister, I. Song, and A. Eichmann, 2012: The GEOS-5 atmospheric general circulation model: Mean climate and development from MERRA to Fortuna. NASA/TM-2012-104606, Vol. 28, 124 pp., https://gmao.gsfc.nasa.gov/pubs/docs/tm28.pdf.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor-Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G. Y., and Coauthors, 2011: The community Noah land surface model with multi-parameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, J. B., J. S. Kenyon, W. Angevine, J. M. Brown, M. Pagowski, and K. Sušelj, 2019: A description of the MYNN-EDMF scheme and the coupling to other components in WRF-ARW. NOAA Tech. Memo OAR GSD-61, 37 pp., https://doi.org/10.25923/n9wm-be49.

    • Search Google Scholar
    • Export Citation
  • Perez, R., M. David, T. E. Hoff, M. Jamaly, S. Kivalov, J. Kleissl, P. Lauret, and M. Perez, 2016: Spatial and temporal variability of solar energy. Found. Trends Renew. Energy, 1, 144, https://doi.org/10.1561/2700000006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., T. J. Lee, J. H. Copeland, J. L. Eastman, C. L. Ziegler, and C. A. Finle, 1997: Use of USGS-provided data to improve climate simulations. Ecol. Appl., 7, 321, https://doi.org/10.1890/1051-0761(1997)007[0003:UOUPDT]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007a: A combined local and non-local closure model for the atmospheric boundary layer. Part 1: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, https://doi.org/10.1175/JAM2539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007b: A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: Application and evaluation in a mesoscale meteorological model. J. Appl. Meteor. Climatol., 46, 13961409, https://doi.org/10.1175/JAM2534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and Coauthors, 2020: Assessing systematic impacts of PBL schemes on storm evolution in the NOAA Warn-on-Forecast System. Mon. Wea. Rev., 148, 25672590, https://doi.org/10.1175/MWR-D-19-0389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. Tech. Memo. NASA/TM-2008-104606, Vol. 27, 118 pp., http://gmao.gsfc.nasa.gov/pubs/docs/Rienecker369.pdf.

    • Search Google Scholar
    • Export Citation
  • Schmidli, J., S. Böing, and O. Fuhrer, 2018: Accuracy of simulated diurnal valley winds in the Swiss Alps: Influence of grid resolution, topography filtering, and land surface datasets. Atmosphere, 9, 196, https://doi.org/10.3390/atmos9050196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwitalla, T., O. Branch, and V. Wulfmeyer, 2020: Sensitivity study of the planetary boundary layer and microphysical schemes to the initialization of convection over the Arabian Peninsula. Quart. J. Roy. Meteor. Soc., 146, 846869, https://doi.org/10.1002/qj.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serafin, S., and D. Zardi, 2010: Structure of the atmospheric boundary layer in the vicinity of a developing upslope flow system: A numerical model study. J. Atmos. Sci., 67, 11711185, https://doi.org/10.1175/2009JAS3231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250271, https://doi.org/10.1175/MWR-D-14-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF Model version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., J. M. Brown, S. G. Benjamin, and J. S. Kenyon, 2016: Modifications to the Rapid Update Cycle Land Surface Model (RUC LSM) available in the Weather Research and Forecasting (WRF) Model. Mon. Wea. Rev., 144, 18511865, https://doi.org/10.1175/MWR-D-15-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer, 666 pp.

  • Taylor, C. M., and R. J. Ellis, 2006: Satellite detection of soil moisture impacts on convection at the mesoscale. Geophys. Res. Lett., 33, L03404, https://doi.org/10.1029/2005GL025252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., D. J. Parker, and P. P. Harris, 2007: An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys. Res. Lett., 34, L15801, https://doi.org/10.1029/2007GL030572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., F. Chen, and K. W. Manning, 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev., 132, 29542976, https://doi.org/10.1175/MWR2839.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J. F., and Coauthors, 2009: Impact of deforestation in the Amazon basin on cloud climatology. Proc. Natl. Acad. Sci. USA, 106, 36703674, https://doi.org/10.1073/pnas.0810156106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z. L., and Coauthors, 2011: The community Noah land surface model with multi-parameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, https://doi.org/10.1029/2010JD015140.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 297 297 25
Full Text Views 176 175 8
PDF Downloads 114 114 13

Evaluation of Model Summertime Boundary Layer Cloud Development over Complex Terrain in New York State

Lanxi MinaSchool of Computer and Information Engineering, Xiamen University of Technology, Xiamen, Fujian, China
bAtmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Search for other papers by Lanxi Min in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7569-2924
,
Qilong MinbAtmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Search for other papers by Qilong Min in
Current site
Google Scholar
PubMed
Close
, and
Yuyi DubAtmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Search for other papers by Yuyi Du in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Weather forecasting over complex terrain with diverse land cover is challenging. Utilizing the high-resolution observations from New York State Mesonet (NYSM), we are able to evaluate the surface processes of the Weather Research Forecast (WRF) Model in a detailed, scale-dependent manner. In the study, possible impacts of land–atmosphere interaction on surface meteorology and boundary layer cloud development are investigated with different model resolutions, land surface models (LSMs), and planetary boundary layer (PBL) physical parameterizations. The High-Resolution Rapid Refresh, version 3 (HRRR), forecasting model is used as a reference for the sensitivity evaluation. Results show that over complex terrain, the high-resolution simulations (1 km × 60 vertical levels) generally perform better compared to low-resolution (3 km × 50 levels) in both surface meteorology and cloud fields. LSMs play a more important role in surface meteorology compared to PBL schemes. The NoahMP land surface model exhibits daytime warmer and drier biases compared to the Rapid Update Cycle (RUC) due to better prediction of the Bowen ratio in RUC. The PBL schemes would affect the convective strength in the boundary layer. The Shin–Hong (SH) scale-aware scheme tends to produce the strongest convective strength in the PBL, while the ACM2 PBL scheme rarely resolved convection even at 1-km resolution. By considering the radiation effect of subgrid-scale (SGS) clouds, the Mellor–Yamada–Nakanishi–Niino eddy diffusivity mass flux (MYNN-EDMF) predicted the highest cloud coverage and lowest surface solar radiation bias. The configuration of SGS clouds in MYNN-EDMF would not only significantly reduce shortwave radiation bias, but also affect the convection behaviors through land surface–cloud–radiation interaction.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qilong Min, qmin@albany.com

Abstract

Weather forecasting over complex terrain with diverse land cover is challenging. Utilizing the high-resolution observations from New York State Mesonet (NYSM), we are able to evaluate the surface processes of the Weather Research Forecast (WRF) Model in a detailed, scale-dependent manner. In the study, possible impacts of land–atmosphere interaction on surface meteorology and boundary layer cloud development are investigated with different model resolutions, land surface models (LSMs), and planetary boundary layer (PBL) physical parameterizations. The High-Resolution Rapid Refresh, version 3 (HRRR), forecasting model is used as a reference for the sensitivity evaluation. Results show that over complex terrain, the high-resolution simulations (1 km × 60 vertical levels) generally perform better compared to low-resolution (3 km × 50 levels) in both surface meteorology and cloud fields. LSMs play a more important role in surface meteorology compared to PBL schemes. The NoahMP land surface model exhibits daytime warmer and drier biases compared to the Rapid Update Cycle (RUC) due to better prediction of the Bowen ratio in RUC. The PBL schemes would affect the convective strength in the boundary layer. The Shin–Hong (SH) scale-aware scheme tends to produce the strongest convective strength in the PBL, while the ACM2 PBL scheme rarely resolved convection even at 1-km resolution. By considering the radiation effect of subgrid-scale (SGS) clouds, the Mellor–Yamada–Nakanishi–Niino eddy diffusivity mass flux (MYNN-EDMF) predicted the highest cloud coverage and lowest surface solar radiation bias. The configuration of SGS clouds in MYNN-EDMF would not only significantly reduce shortwave radiation bias, but also affect the convection behaviors through land surface–cloud–radiation interaction.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qilong Min, qmin@albany.com
Save