• Andra, D. L., Jr., E. M. Quoetone, and W. F. Bunting, 2002: Warning decision making: The relative roles of conceptual models, technology, strategy, and forecaster expertise on 3 May 1999. Wea. Forecasting, 17, 559566, https://doi.org/10.1175/1520-0434(2002)017<0559:WDMTRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansari, S., and Coauthors, 2018: Unlocking the potential of NEXRAD data through NOAA’s Big Data partnership. Bull. Amer. Meteor. Soc., 99, 189204, https://doi.org/10.1175/BAMS-D-16-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieringer, P., and P. S. Ray, 1996: A comparison of tornado warning lead times with and without NEXRAD Doppler radar. Wea. Forecasting, 11, 4752, https://doi.org/10.1175/1520-0434(1996)011<0047:ACOTWL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, A. W., and W. S. Ashley, 2011: The relationship between tornadic and nontornadic wind fatalities and warnings. Wea. Climate Soc., 3, 3147, https://doi.org/10.1175/2010WCAS1094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowden, K. A., and P. L. Heinselman, 2016: A qualitative analysis of NWS forecasters’ use of phased-array radar data during severe hail and wind events. Wea. Forecasting, 31, 4355, https://doi.org/10.1175/WAF-D-15-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowden, K. A., P. L. Heinselman, D. M. Kingfield, and R. P. Thomas, 2015: Impacts of phased-array radar data on forecaster performance during severe hail and wind events. Wea. Forecasting, 30, 389404, https://doi.org/10.1175/WAF-D-14-00101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., V. T. Wood, R. M. Steadham, R. R. Lee, B. A. Flickinger, and D. Sirmans, 2005: New WSR-88D volume coverage pattern 12: Results of field tests. Wea. Forecasting, 20, 385393, https://doi.org/10.1175/WAF848.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chrisman, J. N., 2009: Automated Volume Scan Evaluation and Termination (AVSET)—A simple technique to achieve faster volume scan updates. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., P4.4, https://ams.confex.com/ams/34Radar/techprogram/paper_155324.htm.

    • Search Google Scholar
    • Export Citation
  • Chrisman, J. N., 2013: Dynamic scanning. NEXRAD Now, 22, 13, https://www.roc.noaa.gov/WSR88D/PublicDocs/NNOW/NNow22c.pdf.

  • Chrisman, J. N., 2014: Multiple elevation scan option for SAILS (MESO-SAILS)—The next step in dynamic scanning for the WSR-88D. Radar Operations Center, 27 pp., https://www.roc.noaa.gov/wsr88d/PublicDocs/NewTechnology/MESO-SAILS_Description_Briefing_Jan_2014.pdf.

    • Search Google Scholar
    • Export Citation
  • Chrisman, J. N., 2016: Mid-volume rescan of low-level elevations (MRLE): A new approach to enhance sampling of quasi-linear convective systems (QLCSs). New Radar Technologies Web Page, NOAA/NWS/Radar Operations Center, 21 pp., https://www.roc.noaa.gov/WSR88D/PublicDocs/NewTechnology/DQ_QLCS_MRLE_June_2016.pdf.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., R. L. Alberty, and D. W. Burgess, 1993: Recording, archiving, and using WSR-88D data. Bull. Amer. Meteor. Soc., 74, 645653, https://doi.org/10.1175/1520-0477(1993)074<0645:RAAUWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., R. E. Saffle, and J. W. Wilson, 1998: An update on the NEXRAD program and future WSR-88D support to operations. Wea. Forecasting, 13, 253262, https://doi.org/10.1175/1520-0434(1998)013<0253:AUOTNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daniel, A. E., J. N. Chrisman, C. A. Ray, S. D. Smith, and M. W. Miller, 2014: New WSR-88D operational techniques: Responding to recent weather events. Proc. 30th Conf. on Environmental Information Processing Technologies, Atlanta, GA, Amer. Meteor. Soc., 5.2, https://ams.confex.com/ams/94Annual/webprogram/Paper241216.html.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, 21562202, https://doi.org/10.1029/2007JD009598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., 1979: Bootstrap methods: Another look at the jackknife. Ann. Stat., 7, 126, https://doi.org/10.1214/aos/1176344552.

  • Eilts, M. D., J. T. Johnson, E. D. Mitchell, R. J. Lynn, P. Spencer, S. Cobb, and T. M. Smith, 1996: Damaging downburst prediction and detection algorithm for the WSR-88D. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 541545.

    • Search Google Scholar
    • Export Citation
  • Emmerson, S. W., S. E. Nelson, and A. K. Baker, 2019: A comprehensive analysis of tornado debris signatures associated with significant tornadoes from 2010–2017. 18th Annual Student Conf., Phoenix, AZ, Amer. Meteor. Soc., S210, https://ams.confex.com/ams/2019Annual/webprogram/Paper356019.html.

    • Search Google Scholar
    • Export Citation
  • French, M. M., and D. M. Kingfield, 2021: Tornado formation and intensity prediction using polarimetric radar estimates of updraft area. Wea. Forecasting, 36, 22112231, https://doi.org/10.1175/WAF-D-21-0087.1.

    • Search Google Scholar
    • Export Citation
  • Gibbs, J. G., 2016: A skill assessment of techniques for real-time diagnosis and short-term prediction of tornado intensity using the WSR-88D. J. Oper. Meteor., 4, 170181, https://doi.org/10.15191/nwajom.2016.0413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. L. Priegnitz, K. L. Manross, T. M. Smith, and R. W. Adams, 2008: Rapid sampling of severe storms by the National Weather Radar Testbed phased array radar. Wea. Forecasting, 23, 808824, https://doi.org/10.1175/2008WAF2007071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python Programming Language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, J. L., H. B. Bluestein, and J. C. Snyder, 2015: Rapid-scan, polarimetric, Doppler radar observations of tornadogenesis and tornado dissipation in a tornadic supercell: The “El Reno, Oklahoma” storm of 24 May 2011. Mon. Wea. Rev., 143, 26852710, https://doi.org/10.1175/MWR-D-14-00253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., V. N. Bringi, L. D. Carey, and S. Bolen, 1998: CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37, 749775, https://doi.org/10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., M. Dixon, and S. M. Ellis, 2009: Weather radar ground clutter. Part II: Real-time identification and filtering. J. Atmos. Oceanic Technol., 26, 11811197, https://doi.org/10.1175/2009JTECHA1160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ice, R. L., J. G. Cunningham, J. N. Chrisman, W. D. Zittel, S. D. Smith, O. E. Boydstun, R. D. Cook, and A. K. Heck, 2013: WSR-88D program data quality and efficiency enhancements—Plans and status. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 368, https://ams.confex.com/ams/36Radar/webprogram/Manuscript/Paper228782/NEXRAD_DQ_Plans_and_Status_Ice_36thRadar_Sept2013_rv2.pdf.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., J. W. F. Goddard, and S. M. Cherry, 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113, 469489, https://doi.org/10.1002/qj.49711347604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Istok, M. J., A. Cheek, A. D. Stern, R. E. Saffle, W. M. Blanchard, B. R. Klein, and N. Shen, 2009: Leveraging multiple FAA radars for NWS operations. 25th Conf. on Int. Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 10B.2, https://ams.confex.com/ams/89annual/techprogram/paper_145466.htm.

    • Search Google Scholar
    • Export Citation
  • Istok, M. J., D. W. Burgess, R. L. Ice, M. Jain, R. L. Murnan, and J. A. Schultz, 2017: NEXRAD product improvement—Update 2017. 33rd Conf. on Environmental Information Processing Technologies, Seattle, WA, Amer. Meteor. Soc., 9A.1, https://ams.confex.com/ams/97Annual/webprogram/Paper315526.html.

    • Search Google Scholar
    • Export Citation
  • Krause, J. M., 2016: A simple algorithm to discriminate between meteorological and nonmeteorological radar echoes. J. Atmos. Oceanic Technol., 33, 18751885, https://doi.org/10.1175/JTECH-D-15-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krocak, M. J., and H. E. Brooks, 2021: The influence of weather watch type on the quality of tornado warnings and its implications for future forecasting systems. Wea. Forecasting, 36, 16751680, https://doi.org/10.1175/WAF-D-21-0052.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A. V. Ryzhkov, and V. T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 18201843, https://doi.org/10.1175/JAMC-D-13-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., D. J. Bodine, B. L. Cheong, and R. D. Palmer, 2015: High-temporal resolution polarimetric X-band Doppler radar observations of the 20 May 2013 Moore, Oklahoma, tornado. Mon. Wea. Rev., 143, 27112735, https://doi.org/10.1175/MWR-D-14-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., J. C. Snyder, T. J. Schuur, T. T. Lindley, P. L. Heinselman, J. C. Furtado, J. W. Brogden, and R. Toomey, 2019: Rapid-update radar observations of ZDR column depth and its use in the warning decision process. Wea. Forecasting, 34, 11731188, https://doi.org/10.1175/WAF-D-19-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., T. J. Schuur, T. T. Lindley, and J. C. Snyder, 2020: Using ZDR columns in forecaster conceptual models and warning decision-making. Wea. Forecasting, 35, 25072522, https://doi.org/10.1175/WAF-D-20-0083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., B. R. Bowers, J. T. Carlin, T. J. Schuur, J. W. Brogden, R. Toomey, and A. Dean, 2021: Using KDP cores as a downburst precursor signature. Wea. Forecasting, 36, 11831198, https://doi.org/10.1175/WAF-D-21-0005.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, G. Stumpf, and K. Hondl, 2007: The Warning Decision Support System–Integrated Information. Wea. Forecasting, 22, 596612, https://doi.org/10.1175/WAF1009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., D. S. Zaras, P. L. MacKeen, J. J. Gourley, R. Rabin, and K. W. Howard, 1999: Echo height measurements with the WSR-88D: Use of data from one versus two radars. Wea. Forecasting, 14, 455460, https://doi.org/10.1175/1520-0434(1999)014<0455:EHMWTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., and D. R. Whitney, 1947: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat., 18, 5060, https://doi.org/10.1214/aoms/1177730491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nai, F., J. Boettcher, C. Curtis, D. Schvartzman, and S. Torres, 2020: The impact of elevation sidelobe contamination on radar data quality for operational implementation. J. Appl. Meteor. Climatol., 59, 707724, https://doi.org/10.1175/JAMC-D-19-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Academy of Sciences, 2002: Weather Radar Technology beyond NEXRAD. National Academy Press, 72 pp.

  • NOAA, 2011: NWS central region service assessment: Joplin, Missouri, Tornado—May 22, 2011. NOAA, 41 pp., https://www.weather.gov/media/publications/assessments/Joplin_tornado.pdf.

    • Search Google Scholar
    • Export Citation
  • NWS, 2009: Verification procedures: National Weather Services Instruction 10-1601. NOAA/NWS, 83 pp., https://www.nws.noaa.gov/directives/010/archive/pd01016001d.pdf.

    • Search Google Scholar
    • Export Citation
  • NWS, 2020: WFO severe weather product specification: National Weather Service Instruction 10-511. NOAA/NWS, 64 pp., https://www.nws.noaa.gov/directives/sym/pd01005011curr.pdf.

    • Search Google Scholar
    • Export Citation
  • NWS, 2021: National severe weather products specification: National Weather Service Instruction 10-512. NOAA/NWS, 73 pp., https://www.nws.noaa.gov/directives/sym/pd01005012curr.pdf.

    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., T. M. Smith, K. L. Manross, K. A. Scharfenberg, A. Witt, A. G. Kolodziej, and J. J. Gourley, 2009: The Severe Hazards Analysis and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 15191530, https://doi.org/10.1175/2009BAMS2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picca, J. C., M. R. Kumjian, and A. V. Ryzhkov, 2010: ZDR columns as a predictive tool for hail growth and storm evolution. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 11.3, https://ams.confex.com/ams/25SLS/techprogram/paper_175750.htm.

    • Search Google Scholar
    • Export Citation
  • Polger, P. D., B. S. Goldsmith, R. C. Przywarty, and J. R. Bocchieri, 1994: National Weather Service warning performance based on the WSR-88D. Bull. Amer. Meteor. Soc., 75, 203214, https://doi.org/10.1175/1520-0477(1994)075<0203:NWSWPB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, L. M., J. G. Cunningham, W. D. Zittel, R. R. Lee, R. L. Ice, V. M. Melnikov, N. P. Hoban, and J. G. Gebauer, 2017: Bragg scatter detection by the WSR-88D. Part I: Algorithm development. J. Atmos. Oceanic Technol., 34, 465478, https://doi.org/10.1175/JTECH-D-16-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ROC, 2015: WSR-88D Volume Coverage Pattern (VCP) improvement initiatives. New Radar Technologies Web Page, NOAA/NWS/Radar Operations Center, 8 pp., https://www.roc.noaa.gov/WSR88D/PublicDocs/NewTechnology/New_VCP_Paradigm_Public_Oct_2015.pdf.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, https://doi.org/10.1175/JAM2235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and P. Zhang, 2013: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, https://doi.org/10.1175/JAMC-D-13-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and D. S. Zrnić, 1999: Systematic phase codes for resolving range overlaid signals in a Doppler weather radar. J. Atmos. Oceanic Technol., 16, 13511363, https://doi.org/10.1175/1520-0426(1999)016<1351:SPCFRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saffle, R., M. Istok, and L. D. Johnson, 2002: NEXRAD open systems—Progress and plans. Preprints, 18th Conf. on Interactive Information Processing Systems, Orlando, FL, Amer. Meteor. Soc., 5.1.

    • Search Google Scholar
    • Export Citation
  • Smalley, D. J., B. J. Bennett, and R. S. Frankel, 2005: MIGFA: The Machine Intelligent Gust Front Algorithm for NEXRAD. 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 8R.4., https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_96098.htm.

    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., and A. V. Ryzhkov, 2015: Automated detection of polarimetric tornadic debris signatures using a hydrometeor classification algorithm. J. Appl. Meteor. Climatol., 54, 18611870, https://doi.org/10.1175/JAMC-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., A. V. Ryzhkov, M. R. Kumjian, A. P. Khain, and J. Picca, 2015: A ZDR column detection algorithm to examine convective storm updrafts. Wea. Forecasting, 30, 18191844, https://doi.org/10.1175/WAF-D-15-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. T. Johnson, M. D. Eilts, K. W. Thomas, and D. W. Burgess, 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Wea. Forecasting, 13, 304326, https://doi.org/10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, S. M., and C. D. Curtis, 2007: Initial implementation of super-resolution data on the NEXRAD network. 23rd Conf. on Information Processing Systems, San Antonio, TX, Amer. Meteor. Soc., 5B.10, https://ams.confex.com/ams/87ANNUAL/techprogram/paper_116240.htm.

    • Search Google Scholar
    • Export Citation
  • Torres, S. M., and D. Schvartzman, 2020: A simulation framework to support the design and evaluation of adaptive scanning for phased-array weather radars. J. Atmos. Oceanic. Technol., 37, 23212339, https://doi.org/10.1175/JTECH-D-20-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. M. Wheatley, N. T. Atkins, R. W. Przybylinski, and R. Wolf, 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415, https://doi.org/10.1175/WAF925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., 2017: Polarimetric radar metrics related to tornado life cycles and intensity in supercell storms. Mon. Wea. Rev., 145, 36713686, https://doi.org/10.1175/MWR-D-16-0453.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Lier-Walqui, M., and Coauthors, 2016: On polarimetric radar signatures of deep convection for model evaluation: Column of specific differential phase observed during MC3E. Mon. Wea. Rev., 144, 737758, https://doi.org/10.1175/MWR-D-15-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, M., and Coauthors, 2021: Towards the next generation operational meteorological radar. Bull. Amer. Meteor. Soc., 102, E1357E1383, https://doi.org/10.1175/BAMS-D-20-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, K. A., P. L. Heinselman, C. M. Kuster, D. M. Kingfield, and Z. Kang, 2017: Forecaster performance and workload: Does radar update time matter? Wea. Forecasting, 32, 253274, https://doi.org/10.1175/WAF-D-16-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. W. Mitchell, and K. W. Thomas, 1998a: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, E. D. Mitchell, J. T. Johnson, and K. W. Thomas, 1998b: Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting, 13, 513518, https://doi.org/10.1175/1520-0434(1998)013<0513:ETPOWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zittel, W. D., 2019: Theory and concept of operations for multi-PRF dealiasing algorithm’s VCP 112. New Radar Technologies Web Page, NOAA/NWS/Radar Operations Center, 13 pp., https://www.roc.noaa.gov/WSR88D/PublicDocs/NewTechnology/Theory_ConOps_VCP112.pdf.

    • Search Google Scholar
    • Export Citation
  • Zittel, W. D., and T. Wiegman, 2005: VCP 121 and the multi-PRF dealiasing algorithm. NEXRAD Now, 14, 915, https://www.roc.noaa.gov/wsr88d/PublicDocs/NNOW/NNwinter05d.pdf.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 495 422 18
Full Text Views 198 179 6
PDF Downloads 281 257 6

The Influence of WSR-88D Intra-Volume Scanning Strategies on Thunderstorm Observations and Warnings in the Dual-Polarization Radar Era: 2011–20

Darrel M. KingfieldaCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
bNOAA/Global Systems Laboratory, Boulder, Colorado

Search for other papers by Darrel M. Kingfield in
Current site
Google Scholar
PubMed
Close
and
Michael M. FrenchcSchool of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Michael M. French in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Weather Surveillance Radar-1988 Doppler (WSR-88D) network has undergone several improvements in the last decade with the upgrade to dual-polarization capabilities and the ability for forecasters to rescan the lowest levels of the atmosphere more frequently through the use of Supplemental Adaptive Intra-volume Scanning (SAILS). SAILS reduces the revisit period for scanning the lowest 1 km of the atmosphere but comes at the cost of a longer delay between scans at higher altitudes. This study quantifies how often radar volume coverage patterns (VCPs) and all available SAILS options are used during the issuance of 148 882 severe thunderstorm and 18 263 tornado warnings, and near 10 474 tornado, 58 934 hail, and 127 575 wind reports in the dual-polarization radar era. A large majority of warnings and storm reports were measured with a VCP providing denser low-level sampling coverage. More frequent low-level updates were employed near tornado warnings and reports compared to severe thunderstorm warnings and hail or wind hazards. Warnings issued near a radar providing three extra low-level scans (SAILSx3) were more likely to be verified by a hazard with a positive lead time than warnings with fewer low-level scans. However, extra low-level scans were more frequently used in environments supporting organized convection as shown using watches issued by the Storm Prediction Center. In recent years, the number of midlevel radar elevation scans is declining per hour, which can adversely affect the tracking of convective polarimetric signatures, like ZDR columns, which were found above the lowest elevation angle in over 99% of cases examined.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Darrel M. Kingfield, darrel.kingfield@noaa.gov

Abstract

The Weather Surveillance Radar-1988 Doppler (WSR-88D) network has undergone several improvements in the last decade with the upgrade to dual-polarization capabilities and the ability for forecasters to rescan the lowest levels of the atmosphere more frequently through the use of Supplemental Adaptive Intra-volume Scanning (SAILS). SAILS reduces the revisit period for scanning the lowest 1 km of the atmosphere but comes at the cost of a longer delay between scans at higher altitudes. This study quantifies how often radar volume coverage patterns (VCPs) and all available SAILS options are used during the issuance of 148 882 severe thunderstorm and 18 263 tornado warnings, and near 10 474 tornado, 58 934 hail, and 127 575 wind reports in the dual-polarization radar era. A large majority of warnings and storm reports were measured with a VCP providing denser low-level sampling coverage. More frequent low-level updates were employed near tornado warnings and reports compared to severe thunderstorm warnings and hail or wind hazards. Warnings issued near a radar providing three extra low-level scans (SAILSx3) were more likely to be verified by a hazard with a positive lead time than warnings with fewer low-level scans. However, extra low-level scans were more frequently used in environments supporting organized convection as shown using watches issued by the Storm Prediction Center. In recent years, the number of midlevel radar elevation scans is declining per hour, which can adversely affect the tracking of convective polarimetric signatures, like ZDR columns, which were found above the lowest elevation angle in over 99% of cases examined.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Darrel M. Kingfield, darrel.kingfield@noaa.gov
Save