Development and Evaluation of Global Korean Aviation Turbulence Forecast Systems Based on an Operational Numerical Weather Prediction Model and In Situ Flight Turbulence Observation Data

Dan-Bi Lee aDepartment of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Search for other papers by Dan-Bi Lee in
Current site
Google Scholar
PubMed
Close
,
Hye-Yeong Chun aDepartment of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Search for other papers by Hye-Yeong Chun in
Current site
Google Scholar
PubMed
Close
,
Soo-Hyun Kim bSchool of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Soo-Hyun Kim in
Current site
Google Scholar
PubMed
Close
,
Robert D. Sharman cNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Robert D. Sharman in
Current site
Google Scholar
PubMed
Close
, and
Jung-Hoon Kim bSchool of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Jung-Hoon Kim in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A global Korean deterministic aviation turbulence guidance (G-KTG) system and a global Korean probabilistic turbulence forecast (G-KPT) system are developed using outputs from the operational Global Data Assimilation and Prediction System of the Korea Meteorological Administration, and the performance skill of the systems are evaluated against in situ flight eddy dissipation rates (EDRs) recorded for one year (September 2018–August 2019). G-KTG and G-KPT consider clear-air turbulence (CAT) and mountain wave turbulence diagnostics, while G-KTG additionally considers near-cloud turbulence (NCT) diagnostics. In the G-KTG system, the various combinations of deterministic EDR forecasts are tested by different ensemble means of individual turbulence diagnostics. In the G-KPT system, the probabilistic forecast is established by counting the number of diagnostics that exceed a certain threshold for strong intensity turbulence on the given model grid. The evaluation results of the G-KTG system based on the area under the relative operating characteristic curve (AUC) reveal that G-KTG, which consists of CAT and NCT diagnostics, shows the highest AUC value among the various G-KTG combinations; in addition, the summertime performance is significantly improved when NCT diagnostics are included. In the evaluation results of the G-KTG system over the globe, U.S., and East Asia regions, the recent graphical turbulence guidance system–based G-KTG shows better performance than the regional KTG–based G-KTG for all three regions. For all altitude bands, the G-KPTs with 40% probability as the minimal threshold for alerting forecasters of strong turbulence show higher values of true skill statistic than the G-KTGs.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hye-Yeong Chun, chunhy@yonsei.ac.kr

Abstract

A global Korean deterministic aviation turbulence guidance (G-KTG) system and a global Korean probabilistic turbulence forecast (G-KPT) system are developed using outputs from the operational Global Data Assimilation and Prediction System of the Korea Meteorological Administration, and the performance skill of the systems are evaluated against in situ flight eddy dissipation rates (EDRs) recorded for one year (September 2018–August 2019). G-KTG and G-KPT consider clear-air turbulence (CAT) and mountain wave turbulence diagnostics, while G-KTG additionally considers near-cloud turbulence (NCT) diagnostics. In the G-KTG system, the various combinations of deterministic EDR forecasts are tested by different ensemble means of individual turbulence diagnostics. In the G-KPT system, the probabilistic forecast is established by counting the number of diagnostics that exceed a certain threshold for strong intensity turbulence on the given model grid. The evaluation results of the G-KTG system based on the area under the relative operating characteristic curve (AUC) reveal that G-KTG, which consists of CAT and NCT diagnostics, shows the highest AUC value among the various G-KTG combinations; in addition, the summertime performance is significantly improved when NCT diagnostics are included. In the evaluation results of the G-KTG system over the globe, U.S., and East Asia regions, the recent graphical turbulence guidance system–based G-KTG shows better performance than the regional KTG–based G-KTG for all three regions. For all altitude bands, the G-KPTs with 40% probability as the minimal threshold for alerting forecasters of strong turbulence show higher values of true skill statistic than the G-KTGs.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hye-Yeong Chun, chunhy@yonsei.ac.kr
Save
  • Allouche, O., A. Tsoar, and R. Kadmon, 2006: Assessing the accuracy of species distribution models: Prevalence, kappa and the True Skill Statistic (TSS). J. Appl. Ecol., 43, 12231232, https://doi.org/10.1111/j.1365-2664.2006.01214.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., A. Arribas, K. R. Mylne, K. B. Robertson, and S. E. Beare, 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703722, https://doi.org/10.1002/qj.234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., R. E. Newell, B. E. Anderson, J. D. W. Barrick, and K. L. Thornhill, 2003: Characterizations of tropospheric turbulence and stability layers from aircraft observations. J. Geophys. Res., 108, 8784, https://doi.org/10.1029/2002JD002820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chun, H.-Y., and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 32993310, https://doi.org/10.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornman, L. B., 2016: Airborne in situ measurements of turbulence. Aviation Turbulence: Processes, Detection, Prediction, R. Sharman and T. Lane, Eds., Springer, 97120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Díaz-Fernández, J., and Coauthors, 2021: On the characterization of mountain waves and the development of a warning method for aviation safety using WRF forecast. Atmos. Res., 258, 105620, https://doi.org/10.1016/j.atmosres.2021.105620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutton, J. A., and H. A. Panofsky, 1970: Clear air turbulence: A mystery may be unfolding. Science, 167, 937944, https://doi.org/10.1126/science.167.3920.937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutton, M. J. O., 1980: Probability forecasts of Clear-Air Turbulence (CAT) based on numerical output. Meteorite Mag., 109, 293310.

  • Ellrod, G. P., and D. I. Knapp, 1992: An objective clear-air turbulence forecasting technique: Verification and operational use. Wea. Forecasting, 7, 150165, https://doi.org/10.1175/1520-0434(1992)007<0150:AOCATF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, P. G., 2014: Objective verification of World Area Forecast Centre clear air turbulence forecasts. Meteor. Appl., 21, 311, https://doi.org/10.1002/met.1288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, P. G., and P. Buchanan, 2014: An ensemble based turbulence forecasting system. Meteor. Appl., 21, 1219, https://doi.org/10.1002/met.1373.

  • Hoblit, F. M., 1988: Gust Loads on Aircraft: Concepts and Applications. AIAA Education Series, American Institute of Aeronautics and Astronautics, 306 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ICAO, 2001: Meteorological service for international air navigation. Annex 3 to the Convention on International Civil Aviation, 14th ed. ICAO International Standards and Recommended Practices Tech. Annex, 128 pp.

    • Search Google Scholar
    • Export Citation
  • ICAO, 2018: Meeting of the Meteorology Panel (METP): Fourth meeting. International Civil Aviation Organization Tech. Rep. 4, 340 pp., https://www.icao.int/airnavigation/METP/Panel%20Meetings/METP4_Final%20Report.pdf.

    • Search Google Scholar
    • Export Citation
  • Jang, W., H.-Y. Chun, and J.-H. Kim, 2009: A study of forecast system for clear-air turbulence in Korea. Part I: Korean Integrated Turbulence Forecasting Algorithm (KITFA) (in Korean with English abstract). Atmosphere, 19, 255268.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., and H.-Y. Chun, 2012: Development of the Korean aviation Turbulence Guidance (KTG) system using the operational Unified Model (UM) of the Korea Meteorological Administration (KMA) and pilot reports (PIREPs) (in Korean with English abstract). J. Korean Soc. Aviat. Aeronaut, 20, 7683, https://doi.org/10.12985/ksaa.2012.20.4.076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., H.-Y. Chun, W. Jang, and R. D. Sharman, 2009: A study of forecast system for clear-air turbulence in Korea, Part II: Graphical Turbulence Guidance (GTG) system (in Korean with English abstract). Atmosphere, 19, 269287.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., H.-Y. Chun, R. D. Sharman, and T. L. Keller, 2011: Evaluations of upper-level turbulence diagnostics performance using the Graphical Turbulence Guidance (GTG) system and pilot reports (PIREPs) over East Asia. J. Appl. Meteor. Climatol., 50, 19361951, https://doi.org/10.1175/JAMC-D-10-05017.1; Corrigendum, 50, 2193, https://doi.org/10.1175/JAMC-D-11-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., W. N. Chan, B. Sridhar, and R. D. Sharman, 2015: Combined winds and turbulence prediction system for automated air-traffic management applications. J. Appl. Meteor. Climatol., 54, 766784, https://doi.org/10.1175/JAMC-D-14-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., R. Sharman, M. Strahan, J. W. Scheck, C. Bartholomew, J. C. H. Cheung, P. Buchanan, and N. Gait, 2018: Improvements in non-convective aviation turbulence prediction for the World Area Forecast System (WAFS). Bull. Amer. Meteor. Soc., 99, 22952311, https://doi.org/10.1175/BAMS-D-17-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-H., and H.-Y. Chun, 2016: Aviation turbulence encounters detected from aircraft observations: Spatiotemporal characteristics and application to Korean aviation turbulence guidance. Meteor. Appl., 23, 594604, https://doi.org/10.1002/met.1581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-H., H.-Y. Chun, and P. W. Chan, 2017: Comparison of turbulence indicators obtained from in situ flight data. J. Appl. Meteor. Climatol., 56, 16091623, https://doi.org/10.1175/JAMC-D-16-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-H., H.-Y. Chun, R. D. Sharman, and S. B. Trier, 2019: Development of near-cloud turbulence diagnostics based on a convective gravity wave drag parameterization. J. Appl. Meteor. Climatol., 58, 17251750, https://doi.org/10.1175/JAMC-D-18-0300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-H., H.-Y. Chun, J.-H. Kim, R. D. Sharman, and M. Strahan, 2020: Retrieval of eddy dissipation rate from derived equivalent vertical gust included in Aircraft Meteorological Data Relay (AMDAR). Atmos. Meas. Tech., 13, 13731385, https://doi.org/10.5194/amt-13-1373-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-H., H.-Y. Chun, D.-B. Lee, J.-H. Kim, and R. D. Sharman, 2021: Improving numerical weather prediction-based near-cloud aviation turbulence forecasts by diagnosing convective gravity wave breaking. Wea. Forecasting, 36, 17351757, https://doi.org/10.1175/WAF-D-20-0213.1.

    • Search Google Scholar
    • Export Citation
  • Knox, J. A., 1997: Possible mechanisms of clear-air turbulence in strongly anticyclonic flows. Mon. Wea. Rev., 125, 12511259, https://doi.org/10.1175/1520-0493(1997)125<1251:PMOCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, S. B. Trier, R. G. Fovell, and J. K. Williams, 2012: Recent advances in the understanding of near-cloud turbulence. Bull. Amer. Meteor. Soc., 93, 499515, https://doi.org/10.1175/BAMS-D-11-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D.-B., and H.-Y. Chun, 2014: Development of the seasonal Korean aviation Turbulence Guidance (KTG) system using the regional Unified Model of the Korea Meteorological Administration (KMA) (in Korean with English abstract). Atmosphere, 24, 235243, https://doi.org/10.14191/Atmos.2014.24.2.235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D.-B., and H.-Y. Chun, 2018: Development of the Global-Korean aviation Turbulence Guidance (Global-KTG) system using the Global Data Assimilation and Prediction System (GDAPS) of the Korea Meteorological Administration (KMA) (in Korean with English abstract). Atmosphere, 28, 223232, https://doi.org/10.14191/Atmos.2018.28.2.223.

    • Search Google Scholar
    • Export Citation
  • Lee, D.-B., H.-Y. Chun, and J.-H. Kim, 2020: Evaluation of multimodel-based ensemble forecasts for clear-air turbulence. Wea. Forecasting, 35, 507521, https://doi.org/10.1175/WAF-D-19-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291303.

  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119, https://doi.org/10.1002/qj.49712252905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., and R. D. Sharman, 2018: An improved algorithm for low-level turbulence forecasting. J. Appl. Meteor. Climatol., 57, 12491263, https://doi.org/10.1175/JAMC-D-17-0337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., R. D. Sharman, and W. Deierling, 2020: Aviation turbulence forecasting at upper levels with machine learning techniques based on regression trees. J. Appl. Meteor. Climatol., 59, 18831899, https://doi.org/10.1175/JAMC-D-20-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112, 10011039, https://doi.org/10.1002/qj.49711247406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prasanna, V., H.-W. Choi, J. Jung, Y.-G. Lee, and B.-J. Kim, 2018: High-resolution wind simulation over Incheon international airport with the unified model’s Rose nesting suite from KMA operational forecasts. Asia-Pac. J. Atmos. Sci., 54, 187203, https://doi.org/10.1007/s13143-018-0003-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2000: Skill and relative economic value of the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 126, 649667, https://doi.org/10.1002/qj.49712656313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sela, J., 2010: The derivation of the sigma pressure hybrid coordinate semi-Lagrangian model equations for the GFS. NCEP Office Note 462, 31 pp.

    • Search Google Scholar
    • Export Citation
  • Sharman, R., and T. Lane, Eds., 2016: Aviation Turbulence: Processes, Detection, Prediction. Springer, 523 pp.

  • Sharman, R., and J. Pearson, 2017: Prediction of energy dissipation rates for aviation turbulence. Part I: Forecasting nonconvective turbulence. J. Appl. Meteor. Climatol., 56, 317337, https://doi.org/10.1175/JAMC-D-16-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R., C. Tebaldi, G. Wienner, and J. Wolff, 2006: An integrated approach to mid- and upper-level turbulence forecasting. Wea. Forecasting, 21, 268287, https://doi.org/10.1175/WAF924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R., S. B. Trier, T. P. Lane, and J. D. Doyle, 2012: Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophys. Res. Lett., 39, L12803, https://doi.org/10.1029/2012GL051996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R., L. B. Cornman, G. Meymaris, J. Pearson, and T. Farrar, 2014: Description and derived climatologies of automated in situ eddy-dissipation-rate reports of atmospheric turbulence. J. Appl. Meteor. Climatol., 53, 14161432, https://doi.org/10.1175/JAMC-D-13-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherman, D. J., 1985: The Australian implementation of AMDAR/ACARS and the use of derived equivalent gust velocity as a turbulence indicator. Department of Defense, Defense Science and Technology Organisation, Aeronautical Research Laboratories, Structures Rep. 418, 28 pp.

    • Search Google Scholar
    • Export Citation
  • Storer, L. N., P. G. Gill, and P. D. Williams, 2019: Multi-model ensemble predictions of aviation turbulence. Meteor. Appl., 26, 416428, https://doi.org/10.1002/met.1772.

    • Search Google Scholar
    • Export Citation
  • Swinbank, R., and Coauthors, 2016: The TIGGE project and its achievements. Bull. Amer. Meteor. Soc., 97, 4967, https://doi.org/10.1175/BAMS-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., D. Nychka, B. G. Brown, and R. Sharman, 2002: Flexible discriminant techniques for forecasting clear-air turbulence. Environmetrics, 13, 859878, https://doi.org/10.1002/env.562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tung, K. K., and W. W. Orlando, 2003: The k3 and k5/3 energy spectrum of atmospheric turbulence: Quasigeostrophic two-level model simulation. J. Atmos. Sci., 60, 824835, https://doi.org/10.1175/1520-0469(2003)060<0824:TKAKES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2014: The WMO AMDAR observing systems: Benefits to airlines and aviation. World Meteorological Organization, 4 pp., https://library.wmo.int/doc_num.php?explnum_id=6376.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 401 0 0
Full Text Views 882 480 177
PDF Downloads 787 329 25