• Chang, D., S. Amin, and K. Emanuel, 2020: Modeling and parameter estimation of hurricane wind fields with asymmetry. J. Appl. Meteor. Climatol., 59, 687705, https://doi.org/10.1175/JAMC-D-19-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and N. Lin, 2016: A model for the complete radial structure of the tropical cyclone wind field. Part II: Wind field variability. J. Atmos. Sci., 73, 30933113, https://doi.org/10.1175/JAS-D-15-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and J. A. Knaff, 2022: A simple model for predicting the tropical cyclone radius of maximum wind from outer size. Wea. Forecasting, https://doi.org/10.1175/WAF-D-21-0103.1, in press.

    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., N. Lin, and K. Emanuel, 2015: A model for the complete radial structure of the tropical cyclone wind field. Part I: Comparison with observed structure. J. Atmos. Sci., 72, 36473662, https://doi.org/10.1175/JAS-D-15-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., and C. Guestrin, 2016: XGBoost: A scalable tree boosting system. KDD ′16: Proc. of the 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, San Francisco, CA, ACM, 785794, https://doi.org/10.1145/2939672.2939785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Combot, C., A. Mouche, J. Knaff, Y. Zhao, Y. Zhao, L. Vinour, Y. Quilfen, and B. Chapron, 2020: Extensive high-resolution synthetic aperture radar (SAR) data analysis of tropical cyclones: Comparisons with SFMR flights and best track. Mon. Wea. Rev., 148, 45454563, https://doi.org/10.1175/MWR-D-20-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNapoli, S. M., M. A. Bourassa, and M. D. Powell, 2012: Uncertainty and intercalibration analysis of H*wind. J. Atmos. Oceanic Technol., 29, 822833, https://doi.org/10.1175/JTECH-D-11-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J. M., M. Ge, G. J. Holland, I. Dima-West, S. Phibbs, G. R. Saville, and Y. Wang, 2020: Modelling global tropical cyclone wind footprints. Nat. Hazards Earth Syst. Sci., 20, 567580, https://doi.org/10.5194/nhess-20-567-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, D. W., and D. G. Long, 2002: An assessment of SeaWinds on QuikSCAT wind retrieval. J. Geophys. Res., 107, 3212, https://doi.org/10.1029/2002JC001330.

    • Search Google Scholar
    • Export Citation
  • Draper, D. W., and D. G. Long, 2004: Simultaneous wind and rain retrieval using SeaWinds data. IEEE Trans. Geosci. Remote Sens., 42, 14111423, https://doi.org/10.1109/TGRS.2004.830169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2004: Tropical cyclone energetics and structure. Atmospheric Turbulence and Mesoscale Meteorology, Cambridge University Press, 165192, https://doi.org/10.1017/CBO9780511735035.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249, https://doi.org/10.1175/JAS-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., S. Ravela, E. Vivant, and C. Risi, 2006: A statistical deterministic approach to hurricane risk assessment. Bull. Amer. Meteor. Soc., 87, 299314, https://doi.org/10.1175/BAMS-87-3-299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedman, J. H., 2001: Greedy function approximation: A gradient boosting machine. Ann. Stat., 29, 11891232, https://doi.org/10.1214/aos/1013203451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geiger, T., K. Frieler, and A. Levermann, 2016: High-income does not protect against hurricane losses. Environ. Res. Lett., 11, 084012, https://doi.org/10.1088/1748-9326/11/8/084012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and S. Jewson, 2007: Statistical modelling of North Atlantic tropical cyclone tracks. Tellus, 59A, 5970529, https://doi.org/10.3402/tellusa.v59i4.15017.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 12121218, https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., J. I. Belanger, and A. Fritz, 2010: A revised model for radial profiles of hurricane winds. Mon. Wea. Rev., 138, 43934401, https://doi.org/10.1175/2010MWR3317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, R., and N. Lin, 2020: An environment-dependent probabilistic tropical cyclone model. J. Adv. Model. Earth Syst., 12, e2019MS001975, https://doi.org/10.1029/2019MS001975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, M. R., and C. A. Clayson, 2008: A new approach to using wind speed for prediction of tropical cyclone generated storm surge. Geophys. Res. Lett., 35, L13802, https://doi.org/10.1029/2008GL033564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S., H. Kim, J. Lee, S. Yoon, S. E. Kahou, K. Kashinath, and M. Prabhat, 2019: Deep-hurricane-tracker: Tracking and forecasting extreme climate events. 2019 IEEE Winter Conf. on Applications of Computer Vision (WACV), Waikoloa, HI, Institute of Electrical and Electronics Engineers, 17611769, https://doi.org/10.1109/WACV.2019.00192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klausmann, A., 2014: Analysis of Hurricane Irene’s wind field using the advanced research Weather Research and Forecast (WRF-ARW) Model. J. Mar. Sci. Eng., 2, 3345, https://doi.org/10.3390/jmse2010033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotz, B. W., and H. Jiang, 2016: Global composites of surface wind speeds in tropical cyclones based on a 12-year scatterometer database. Geophys. Res. Lett., 43, 10 48010 488, https://doi.org/10.1002/2016GL071066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotz, B. W., and H. Jiang, 2017: Examination of surface wind asymmetries in tropical cyclones. Part I: General structure and wind shear impacts. Mon. Wea. Rev., 145, 39894009, https://doi.org/10.1175/MWR-D-17-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and D. R. Chavas, 2021: Efforts to estimate the radius of maximum winds in tropical cyclones. Fourth Special Symp. on Tropical Meteorology and Tropical Cyclones, Online, Amer. Meteor. Soc., 12.3, https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/379349.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., M. DeMaria, D. A. Molenar, C. R. Sampson, and M. G. Seybold, 2011: An automated, objective, multiple-satellite-platform tropical cyclone surface wind analysis. J. Appl. Meteor. Climatol., 50, 21492166, https://doi.org/10.1175/2011JAMC2673.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, R. T. DeMaria, and D. A. Molenar, 2015: Improved tropical-cyclone flight-level wind estimates using routine infrared satellite reconnaissance. J. Appl. Meteor. Climatol., 54, 463478, https://doi.org/10.1175/JAMC-D-14-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and G. Chirokova, 2017: A global statistical–dynamical tropical cyclone wind radii forecast Scheme. Wea. Forecasting, 32, 629644, https://doi.org/10.1175/WAF-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 65916617, https://doi.org/10.1175/JCLI-D-12-00539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., and J. D. Doyle, 2018: On the dynamics of tropical cyclone and trough interactions. J. Atmos. Sci., 75, 26872709, https://doi.org/10.1175/JAS-D-17-0272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., and S. S. Chen, 2012: Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere–wave–ocean models and observations. J. Atmos. Sci., 69, 35763594, https://doi.org/10.1175/JAS-D-12-046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., and S. S. Chen, 2014: Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere–ocean model. Mon. Wea. Rev., 142, 19271944, https://doi.org/10.1175/MWR-D-13-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., M. K. Tippett, S. J. Camargo, and A. H. Sobel, 2015: Probabilistic multiple linear regression modeling for tropical cyclone intensity. Mon. Wea. Rev., 143, 933954, https://doi.org/10.1175/MWR-D-14-00171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., M. K. Tippett, A. H. Sobel, and S. J. Camargo, 2016: Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nat. Commun., 7, 10625, https://doi.org/10.1038/ncomms10625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., M. K. Tippett, A. H. Sobel, and S. J. Camargo, 2018: An environmentally forced tropical cyclone hazard model. J. Adv. Model. Earth Syst., 10, 223241, https://doi.org/10.1002/2017MS001186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., S. J. Camargo, A. H. Sobel, and M. K. Tippett, 2020: Statistical–dynamical downscaling projections of tropical cyclone activity in a warming climate: Two diverging genesis scenarios. J. Climate, 33, 48154834, https://doi.org/10.1175/JCLI-D-19-0452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, N., and D. Chavas, 2012: On hurricane parametric wind and applications in storm surge modeling. J. Geophys. Res., 117, D09120, https://doi.org/10.1029/2011JD017126.

    • Search Google Scholar
    • Export Citation
  • Loridan, T., S. Khare, E. Scherer, M. Dixon, and E. Bellone, 2015: Parametric modeling of transitioning cyclone wind fields for risk assessment studies in the western North Pacific. J. Appl. Meteor. Climatol., 54, 624642, https://doi.org/10.1175/JAMC-D-14-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loridan, T., R. P. Crompton, and E. Dubossarsky, 2017: A machine learning approach to modeling tropical cyclone wind field uncertainty. Mon. Wea. Rev., 145, 32033221, https://doi.org/10.1175/MWR-D-16-0429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., C. Pasquero, and F. Primeau, 2012: The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett., 39, L07801, https://doi.org/10.1029/2011GL050765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mouche, A., B. Chapron, J. Knaff, Y. Zhao, B. Zhang, and C. Combot, 2019: Copolarized and cross-polarized SAR measurements for high-resolution description of major hurricane wind Structures: Application to Irma category 5 hurricane. J. Geophys. Res. Oceans, 124, 39053922, https://doi.org/10.1029/2019JC015056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, K. J., M. DeMaria, J. A. Knaff, J. P. Kossin, and T. H. V. Haar, 2006: Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecasting, 21, 9901005, https://doi.org/10.1175/WAF955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Needham, H. F., and B. D. Keim, 2014: Correlating storm surge heights with tropical cyclone winds at and before landfall. Earth Interact., 18, https://doi.org/10.1175/2013EI000527.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olfateh, M., D. P. Callaghan, P. Nielsen, and T. E. Baldock, 2017: Tropical cyclone wind field asymmetry-development and evaluation of a new parametric model. J. Geophys. Res. Oceans, 122, 458469, https://doi.org/10.1002/2016JC012237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peduzzi, P., B. Chatenoux, H. Dao, A. D. Bono, C. Herold, J. Kossin, F. Mouton, and O. Nordbeck, 2012: Global trends in tropical cyclone risk. Nat. Climate Change, 2, 289294, https://doi.org/10.1038/nclimate1410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., S. H. Houston, L. R. Amat, and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77–78, 5364, https://doi.org/10.1016/S0167-6105(98)00131-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinlan, J. R., 1986: Induction of decision trees. Mach. Learn., 1, 81106, https://doi.org/10.1023/A:1022643204877.

  • Racah, E., C. Beckham, T. Maharaj, S. Kahou, Prabhat, and C. Pal, 2017: Extreme weather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. Proc. 31st Int. Conf. on Neural Information Processing Systems, Long Beach, CA, ACM, 34053416, https://dl.acm.org/doi/10.5555/3294996.3295099.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and Coauthors, 2020: Impact of model resolution on tropical cyclone simulation using the HighResMIP-PRIMAVERA multimodel ensemble. J. Climate, 33, 25572583, https://doi.org/10.1175/JCLI-D-19-0639.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40, 19841998, https://doi.org/10.1175/1520-0469(1983)040<1984:TABLFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Z., B. Zhang, J. A. Zhang, and W. Perrie, 2019: Examination of surface wind asymmetry in tropical cyclones over the northwest Pacific Ocean using SMAP observations. Remote Sens., 11, 2604, https://doi.org/10.3390/rs11222604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueno, M., and K. Bessho, 2011: A statistical analysis of near-core surface wind asymmetries in typhoons obtained from QuikSCAT Data. J. Meteor. Soc. Japan. Ser. II, 89, 225241, https://doi.org/10.2151/jmsj.2011-304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., B. W. Klotz, T. Vukicevic, P. D. Reasor, and R. F. Rogers, 2014: Observed hurricane wind speed asymmetries and relationships to motion and environmental shear. Mon. Wea. Rev., 142, 12901311, https://doi.org/10.1175/MWR-D-13-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and M. E. Rahn, 2004: Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Mon. Wea. Rev., 132, 30333048, https://doi.org/10.1175/MWR2831.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., R. W. R. Darling, and M. E. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134, 11021120, https://doi.org/10.1175/MWR3106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, M. L. M., and J. C. L. Chan, 2007: Modeling the effects of land–sea roughness contrast on tropical cyclone winds. J. Atmos. Sci., 64, 32493264, https://doi.org/10.1175/JAS4027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, V. T., L. W. White, H. E. Willoughby, and D. P. Jorgensen, 2013: A new parametric tropical cyclone tangential wind profile model. Mon. Wea. Rev., 141, 18841909, https://doi.org/10.1175/MWR-D-12-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., C.-Y. Lee, and M. K. Tippett, 2020: A long short-term memory model for global rapid intensification prediction. Wea. Forecasting, 35, 12031220, https://doi.org/10.1175/WAF-D-19-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 641 526 43
Full Text Views 220 180 10
PDF Downloads 211 185 10

Machine Learning–Based Hurricane Wind Reconstruction

Qidong YangaDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, New York
bCourant Institute of Mathematical Sciences, New York University, New York, New York

Search for other papers by Qidong Yang in
Current site
Google Scholar
PubMed
Close
,
Chia-Ying LeecLamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Chia-Ying Lee in
Current site
Google Scholar
PubMed
Close
,
Michael K. TippettaDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Michael K. Tippett in
Current site
Google Scholar
PubMed
Close
,
Daniel R. ChavasdDepartment of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana

Search for other papers by Daniel R. Chavas in
Current site
Google Scholar
PubMed
Close
, and
Thomas R. KnutsoneNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Thomas R. Knutson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Here we present a machine learning–based wind reconstruction model. The model reconstructs hurricane surface winds with XGBoost, which is a decision-tree-based ensemble predictive algorithm. The model treats the symmetric and asymmetric wind fields separately. The symmetric wind field is approximated by a parametric wind profile model and two Bessel function series. The asymmetric field, accounting for asymmetries induced by the storm and its ambient environment, is represented using a small number of Laplacian eigenfunctions. The coefficients associated with Bessel functions and eigenfunctions are predicted by XGBoost based on storm and environmental features taken from NHC best-track and ERA-Interim data, respectively. We use HWIND for the observed wind fields. Three parametric wind profile models are tested in the symmetric wind model. The wind reconstruction model’s performance is insensitive to the choice of the profile model because the Bessel function series correct biases of the parametric profiles. The mean square error of the reconstructed surface winds is smaller than the climatological variance, indicating skillful reconstruction. Storm center location, eyewall size, and translation speed play important roles in controlling the magnitude of the leading asymmetries, while the phase of the asymmetries is mainly affected by storm translation direction. Vertical wind shear impacts the asymmetry phase to a lesser degree. Intended applications of this model include assessing hurricane risk using synthetic storm event sets generated by statistical–dynamical downscaling hurricane models.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qidong Yang, qy2216@columbia.edu

Abstract

Here we present a machine learning–based wind reconstruction model. The model reconstructs hurricane surface winds with XGBoost, which is a decision-tree-based ensemble predictive algorithm. The model treats the symmetric and asymmetric wind fields separately. The symmetric wind field is approximated by a parametric wind profile model and two Bessel function series. The asymmetric field, accounting for asymmetries induced by the storm and its ambient environment, is represented using a small number of Laplacian eigenfunctions. The coefficients associated with Bessel functions and eigenfunctions are predicted by XGBoost based on storm and environmental features taken from NHC best-track and ERA-Interim data, respectively. We use HWIND for the observed wind fields. Three parametric wind profile models are tested in the symmetric wind model. The wind reconstruction model’s performance is insensitive to the choice of the profile model because the Bessel function series correct biases of the parametric profiles. The mean square error of the reconstructed surface winds is smaller than the climatological variance, indicating skillful reconstruction. Storm center location, eyewall size, and translation speed play important roles in controlling the magnitude of the leading asymmetries, while the phase of the asymmetries is mainly affected by storm translation direction. Vertical wind shear impacts the asymmetry phase to a lesser degree. Intended applications of this model include assessing hurricane risk using synthetic storm event sets generated by statistical–dynamical downscaling hurricane models.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qidong Yang, qy2216@columbia.edu
Save