• Beljaars, A. C. M., 1994: The parameterization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270, https://doi.org/10.1002/qj.49712152203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, M., T. Li, M. Peng, and X. Shen, 2015: Interactions between Typhoon Megi (2010) and a low-frequency monsoon gyre. J. Atmos. Sci., 72, 26822702, https://doi.org/10.1175/JAS-D-14-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., W. E. Bracken, J. Molinari, C. S. Velden, and P. G. Black, 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128, 322352, https://doi.org/10.1175/1520-0493(2000)128<0322:EIOTRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., P. P. Papin, A. M. Bentley, and T. Burg, 2018: TC Lionrock (2016) touches all the bases during its lifecycle: Monsoon gyre, tropical transition, TC–TC interactions, a predecessor rain event, and extratropical transition. 33rd Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra, FL, Amer. Meteor. Soc., 1D.2, https://ams.confex.com/ams/33HURRICANE/webprogram/Paper339524.html.

    • Search Google Scholar
    • Export Citation
  • Brand, S., 1970: Interaction of binary tropical cyclones of the western North Pacific Ocean. J. Appl. Meteor., 9, 433441, https://doi.org/10.1175/1520-0450(1970)009<0433:IOBTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, L. E., III, and R. L. Elsberry, 1990: Observational evidence for predictions of tropical cyclone propagation relative to environmental steering. J. Atmos. Sci., 47, 542546, https://doi.org/10.1175/1520-0469(1990)047<0542:OEFPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, L. E., III, and R. L. Elsberry, 1995: Monsoonal interactions leading to sudden tropical cyclone track changes. Mon. Wea. Rev., 123, 265290, https://doi.org/10.1175/1520-0493(1995)123<0265:MILTST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, L. E., III, and R. L. Elsberry, 1998: Objective diagnosis of binary tropical cyclone interactions for the western North Pacific basin. Mon. Wea. Rev., 126, 17341740, https://doi.org/10.1175/1520-0493(1998)126<1734:ODOBTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, L. E., III, and R. L. Elsberry, 2000: Dynamical tropical cyclone track forecast errors. Part I: Tropical region error sources. Wea. Forecasting, 15, 641661, https://doi.org/10.1175/1520-0434(2000)015<0641:DTCTFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 13541374, https://doi.org/10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., J. M. Chen, P. A. Harr, and L. E. Carr, 1996: Northwestward-propagating wave-like patterns over the tropical western North Pacific during summer. Mon. Wea. Rev., 124, 22452266, https://doi.org/10.1175/1520-0493(1996)124<2245:NPWPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., M. S. Peng, C. A. Reynolds, and C.-C. Wu, 2009: Interpretation of tropical cyclone forecast sensitivity from the singular vector perspective. J. Atmos. Sci., 66, 33833400, https://doi.org/10.1175/2009JAS3063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T. C., S. Y. Wang, M. C. Yen, and A. J. Clark, 2009: Impact of the intraseasonal variability of the western North Pacific large-scale circulation on tropical cyclone tracks. Wea. Forecasting, 24, 646666, https://doi.org/10.1175/2008WAF2222186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2004: The TT problem: Forecasting the tropical transition of cyclones. Bull. Amer. Meteor. Soc., 85, 16571662, https://doi.org/10.1 175/BAMS-85-11-1657.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, https://doi.org/10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, K., and C. J. Neumann, 1983: On the relative motion of binary tropical cyclones. Mon. Wea. Rev., 111, 945953, https://doi.org/10.1175/1520-0493(1983)111<0945:OTRMOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dzung, N. L., and T. J. Yamada, 2017: Simulation of tropical cyclone 201610 (Lionrock) and its remote effect on heavy rainfall in Hokkaido. J. Japan Soc. Civ. Eng., 73, 199204, https://doi.org/10.2208/jscejhe.73.I_199.

    • Search Google Scholar
    • Export Citation
  • Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975990, https://doi.org/10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwhara, S., 1921: The mutual tendency toward symmetry of motion and its application as a principle in meteorology. Quart. J. Roy. Meteor. Soc., 47, 287292, https://doi.org/10.1002/qj.49704720010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwhara, S., 1923: On the growth and decay of vortical systems. Quart. J. Roy. Meteor. Soc., 49, 75104, https://doi.org/10.1002/qj.49704920602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, X., T. Li, S. Zhang, and M. Peng, 2010: What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)? Atmos. Sci. Lett., 11, 4650, https://doi.org/10.1002/asl.255.

    • Search Google Scholar
    • Export Citation
  • Ge, X., Z. Yan, M. S. Peng, M. Bi, and T. Li, 2018: Sensitivity of tropical cyclone track to the vertical structure of a nearby monsoon gyre. J. Atmos. Sci., 75, 20172028, https://doi.org/10.1175/JAS-D-17-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • George, J. E., and W. M. Gray, 1976: Tropical cyclone motion and surrounding parameter relationships. J. Appl. Meteor., 15, 12521264, https://doi.org/10.1175/1520-0450(1976)015<1252:TCMASP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 25702584, https://doi.org/10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1991: Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Mon. Wea. Rev., 119, 14481468, https://doi.org/10.1175/1520-0493(1991)119<1448:TCTCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., R. L. Elsberry, and J. C. L. Chan, 1996: Transformation of a large monsoon depression to a tropical storm during TCM-93. Mon. Wea. Rev., 124, 26252643, https://doi.org/10.1175/1520-0493(1996)124<2625:TOALMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., R. L. Elsberry, and T. F. Hogan, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part II: The impact of midlatitude circulation characteristics. Mon. Wea. Rev., 128, 26342653, https://doi.org/10.1175/1520-0493(2000)128<2634:ETOTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328342, https://doi.org/10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1984: Tropical cyclone motion: A comparison of theory and observation. J. Atmos. Sci., 41, 6875, https://doi.org/10.1175/1520-0469(1984)041<0068:TCMACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., C.-H. Hung, A.-K. Lo, C.-C. Wu, and C.-W. Hung, 2008: Influence of tropical cyclones on the estimation of climate variability in the tropical western North Pacific. J. Climate, 21, 29602975, https://doi.org/10.1175/2007JCLI1847.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1957: The numerical prediction of hurricane movement with the barotropic model. J. Atmos. Sci., 14, 386402, https://doi.org/10.1175/1520-0469(1957)014<0386:TNPOHM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1960: The numerical prediction of hurricane movement with a two-level baroclinic model. J. Atmos. Sci., 17, 357370, https://doi.org/10.1175/1520-0469(1960)017<0357:TNPOHM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 20302045, https://doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 27912801, https://doi.org/10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1994: Description of a monsoon gyre and its effects on the tropical cyclones in the western North Pacific during August 1991. Wea. Forecasting, 9, 640654, https://doi.org/10.1175/1520-0434(1994)009<0640:DOAMGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1996: Specific tropical cyclone track types and unusual tropical cyclone motions associated with a reverse-oriented monsoon trough in the western North Pacific. Wea. Forecasting, 11, 170186, https://doi.org/10.1175/1520-0434(1996)011<0170:STCTTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lander, M. A., and G. J. Holland, 1993: On the interaction of tropical-cyclone-scale vortices. I: Observations. Quart. J. Roy. Meteor. Soc., 119, 13471361, https://doi.org/10.1002/qj.49711951406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118, 18881913, https://doi.org/10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1992: The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 120, 25232539, https://doi.org/10.1175/1520-0493(1992)120<2523:TEAPDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T.-C., T. R. Knutson, H. Kamahori, and M. Ying, 2012: Impacts of climate change on tropical cyclones in the western North Pacific basin. Part I: Past observations. Trop. Cyclone Res. Rev., 1, 213230, https://doi.org/10.6057/2012TCRR02.08.

    • Search Google Scholar
    • Export Citation
  • Li, T., and P.-C. Hsu, 2018: Fundamentals of Tropical Climate Dynamics. Springer, 239 pp.

  • Liang, J., and L. Wu, 2015: Sudden track changes of tropical cyclones in monsoon gyres: Full-physics, idealized numerical experiments. J. Atmos. Sci., 72, 13071322, https://doi.org/10.1175/JAS-D-13-0393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, J., L. Wu, X. Ge, and C.-C. Wu, 2011: Monsoonal influence on Typhoon Morakot (2009). Part II: Numerical study. J. Atmos. Sci., 68, 22222235, https://doi.org/10.1175/2011JAS3731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, M. S., R. N. Maue, C. A. Reynolds, and R. H. Langland, 2007: Hurricanes Ivan, Jeanne, Karl (2004) and mid-latitude trough interactions. Meteor. Atmos. Phys., 97, 221237, https://doi.org/10.1007/s00703-006-0254-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Podlaha, A., S. Bowen, C. Darbinyan, and M. Lorinc, 2016: Global Catastrophe Recap, October 2016. Aon Benfield Tech. Rep., 18 pp., http://thoughtleadership.aonbenfield.com/Documents/20161109-ab-analytics-if-october-global-recap.pdf.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advance Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003: Interactions between the boreal summer intraseasonal oscillation and higher-frequency tropical wave activity. Mon. Wea. Rev., 131, 945960, https://doi.org/10.1175/1520-0493(2003)131<0945:IBTBSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., Z. Zhong, L. Yi, T. Li, M. Chen, H. Wan, Y. Wang, and K. Zhong, 2015: Dependence of the relationship between the tropical cyclone track and western Pacific subtropical high intensity on initial storm size: A numerical investigation. J. Geophys. Res. Atmos., 120, 11 45111 467, https://doi.org/10.1002/2015JD023716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 1115.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., T. J. Elless, P. P. Papin, and C. A. Davis, 2018: Tropical cyclone track sensitivity in deformation steering flow. Mon. Wea. Rev., 146, 31833201, https://doi.org/10.1175/MWR-D-18-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C., and L. Leslie, 1991: The basic relationship between tropical cyclone intensity and the depth of the environmental steering layer in the Australian region. Wea. Forecasting, 6, 244253, https://doi.org/10.1175/1520-0434(1991)006<0244:TBRBTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wada, A., and R. Oyama, 2018: Relation of convective bursts to changes in the intensity of Typhoon Lionrock (2016) during the decay phase simulated by an atmosphere-wave-ocean coupled model. J. Meteor. Soc. Japan, 96, 489509, https://doi.org/10.2151/jmsj.2018-052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. Q., 1995: On an inverse balance equation in sigma coordinates for model initialization. Mon. Wea. Rev., 123, 482488, https://doi.org/10.1175/1520-0493(1995)123<0482:AIBEIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. Q., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129, 13701394, https://doi.org/10.1175/1520-0493(2001)129<1370:AESOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and K. A. Emanuel, 1995a: Potential vorticity diagnostics of hurricane movement. Part I: A case study of Hurricane Bob (1991). Mon. Wea. Rev., 123, 6992, https://doi.org/10.1175/1520-0493(1995)123<0069:PVDOHM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and K. A. Emanuel, 1995b: Potential vorticity diagnostics of hurricane movement. Part II: Tropical Storm Ana (1991) and Hurricane Andrew (1992). Mon. Wea. Rev., 123, 93109, https://doi.org/10.1175/1520-0493(1995)123<0093:PVDOHM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., T.-H. Yen, Y.-H. Kuo, and W. Wang, 2002: Rainfall simulation associated with Typhoon Herb (1996) near Taiwan. Part I: The topographic effect. Wea. Forecasting, 17, 10011015, https://doi.org/10.1175/1520-0434(2003)017<1001:RSAWTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., J.-H. Chen, P.-H. Lin, and K.-H. Chou, 2007: Targeted observations of tropical cyclone movement based on the adjoint derived sensitivity steering vector. J. Atmos. Sci., 64, 26112626, https://doi.org/10.1175/JAS3974.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., S.-G. Chen, J.-H. Chen, K.-H. Chou, and P.-H. Lin, 2009: Interaction of Typhoon Shanshan (2006) with the midlatitude trough from both adjoint-derived sensitivity steering vector and potential vorticity perspectives. Mon. Wea. Rev., 137, 852862, https://doi.org/10.1175/2008MWR2585.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 18991911, https://doi.org/10.1175/1520-0493(2000)128<1899:APVTDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., Y. Du, D. Wang, C. Wang, and X. Wang, 2015: Impact of intraseasonal oscillation on the tropical cyclone track in the South China Sea. Climate Dyn., 44, 15051519, https://doi.org/10.1007/s00382-014-2180-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 310 216 9
Full Text Views 139 81 1
PDF Downloads 194 123 1

Understanding the Unusual Track of Typhoon Lionrock (2016)

Mengyuan MaaKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Mengyuan Ma in
Current site
Google Scholar
PubMed
Close
,
Melinda S. PengbUniversity of Colorado, Colorado Springs, Colorado

Search for other papers by Melinda S. Peng in
Current site
Google Scholar
PubMed
Close
,
Tim LicInternational Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii
dDepartment of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
aKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Tim Li in
Current site
Google Scholar
PubMed
Close
, and
Lijuan WangaKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Lijuan Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The unusual movement of Typhoon Lionrock (2016) that posed great challenges for operational numerical predictions was investigated. Analysis of the steering flow at different levels shows that Lionrock’s southwestward motion before 25 August was mainly controlled by the upper-level steering, and the dominant steering shifted to lower levels as the storm turned northeastward abruptly afterward. To examine the influence of the environmental flow on this major turning of Lionrock, three numerical simulations are conducted using the Weather Research and Forecasting (WRF) Model with different starting times. The study indicates that the initial southwestward movement of Lionrock is attributed to the westward extension of the mid- to upper-level subtropical high, and the later turning to northeast is caused by the low-level southwesterly flow associated with the monsoon gyre northeast of Lionrock. In an experiment in which the monsoon gyre is removed from the initial and boundary fields, Lionrock continues its southwestward movement without turning northeastward. This result suggests that the transition of the steering from high to low levels plays a crucial role in the major turning of Lionrock. More sensitivity experiments with modifications of the initial and/or the boundary conditions indicate a low predictability of Lionrock’s major turning.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Tim Li, timli@hawaii.edu; Lijuan Wang, wljfw@163.com

Abstract

The unusual movement of Typhoon Lionrock (2016) that posed great challenges for operational numerical predictions was investigated. Analysis of the steering flow at different levels shows that Lionrock’s southwestward motion before 25 August was mainly controlled by the upper-level steering, and the dominant steering shifted to lower levels as the storm turned northeastward abruptly afterward. To examine the influence of the environmental flow on this major turning of Lionrock, three numerical simulations are conducted using the Weather Research and Forecasting (WRF) Model with different starting times. The study indicates that the initial southwestward movement of Lionrock is attributed to the westward extension of the mid- to upper-level subtropical high, and the later turning to northeast is caused by the low-level southwesterly flow associated with the monsoon gyre northeast of Lionrock. In an experiment in which the monsoon gyre is removed from the initial and boundary fields, Lionrock continues its southwestward movement without turning northeastward. This result suggests that the transition of the steering from high to low levels plays a crucial role in the major turning of Lionrock. More sensitivity experiments with modifications of the initial and/or the boundary conditions indicate a low predictability of Lionrock’s major turning.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Tim Li, timli@hawaii.edu; Lijuan Wang, wljfw@163.com
Save