• Berg, P., H. Feldmann, and H. J. Panitz, 2012: Bias correction of high resolution regional climate model data. J. Hydrol., 448–449, 8092, https://doi.org/10.1016/j.jhydrol.2012.04.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boé, J., L. Terray, F. Habets, and E. Martin, 2007: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol., 27, 16431655, https://doi.org/10.1002/joc.1602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocca, L., and Coauthors, 2011: Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sens. Environ., 115, 33903408, https://doi.org/10.1016/j.rse.2011.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., S. R. Sobie, and T. Q. Murdock, 2015: Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? J. Climate, 28, 69386959, https://doi.org/10.1175/JCLI-D-14-00754.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, D. Chaumont, and M. Braun, 2013: Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour. Res., 49, 41874205, https://doi.org/10.1002/wrcr.20331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crochemore, L., M. H. Ramos, and F. Pappenberger, 2016: Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts. Hydrol. Earth Syst. Sci., 20, 36013618, https://doi.org/10.5194/hess-20-3601-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drusch, M., E. F. Wood, and H. Gao, 2005: Observation operators for the direct assimilation of TRMM microwave imager retrieved soil moisture. Geophys. Res. Lett., 32, L15403, https://doi.org/10.1029/2005GL023623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, S., Z. Li, N. Wang, H. Wu, and B. Tang, 2012: Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data. Remote Sens. Environ., 124, 1525, https://doi.org/10.1016/j.rse.2012.04.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, F. C., E. Bestion, R. Warfield, and G. Yvon-Durocher, 2018: Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc. Natl. Acad. Sci. USA, 115, 10 98910 994, https://doi.org/10.1073/pnas.1805518115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gholamnia, M., S. K. Alavipanah, A. D. Boloorani, S. Hamzeh, and M. Kiavarz, 2019: A new method to model diurnal air temperature cycle. Theor. Appl. Climatol., 137, 229238, https://doi.org/10.1007/s00704-018-2587-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., J. B. Bremnes, J. E. Haugen, and T. Engen-Skaugen, 2012: Technical note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci., 16, 33833390, https://doi.org/10.5194/hess-16-3383-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, L.-Y., Q. Gao, Z. H. Jiang, and L. Li, 2018: Bias correction and projection of surface air temperature in LMDZ multiple simulation over central and eastern China. Adv. Climate Change Res., 9, 8192, https://doi.org/10.1016/j.accre.2018.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, L.-Y., Z. Jiang, D. Chen, H. L. Treut, and L. Li, 2020: Projected precipitation changes over China for global warming levels at 1.5°C and 2°C in an ensemble of regional climate simulations: Impact of bias correction methods. Climatic Change, 162, 623643, https://doi.org/10.1007/s10584-020-02841-z.

    • Search Google Scholar
    • Export Citation
  • Haider, M. R., and Coauthors, 2020: Enabling water and agriculture management in the upper Blue Nile basin through numerical seasonal forecasts and high-resolution sectoral models. 44th NOAA Annual Climate Diagnostics and Prediction Workshop, Durham, NC, NOAA, 154–159, https://www.nws.noaa.gov/ost/climate/STIP/44CDPW/44cdpw-MRHaider.pdf.

  • Hartigan, J. A., and P. M. Hartigan, 1985: The dip test of unimodality. Ann. Stat., 13, 7084, https://doi.org/10.1214/aos/1176346577.

  • Jekel, C. F., G. Venter, M. P. Venter, N. Stander, and R. T. Haftka, 2019: Similarity measures for identifying material parameters from hysteresis loops using inverse analysis. Int. J. Mater. Form., 12, 355378, https://doi.org/10.1007/s12289-018-1421-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jury, M. R., 2016: Large-scale features of Africa’s diurnal climate. Phys. Geogr., 37, 120131, https://doi.org/10.1080/02723646.2016.1163004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khadim, F. K., Z. Dokou, R. Lazin, S. Moges, A. C. Bagtzoglou, and E. Anagnostou, 2020: Groundwater modeling in data scarce aquifers: The case of Gilgel-Abay, Upper Blue Nile, Ethiopia. J. Hydrol., 590, 125214–, https://doi.org/10.1016/j.jhydrol.2020.125214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafon, T., S. Dadson, G. Buys, and C. Prudhomme, 2013: Bias correction of daily precipitation simulated by a regional climate model: A comparison of methods. Int. J. Climatol., 33, 13671381, https://doi.org/10.1002/joc.3518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazin, R., X. Shen, M. Koukoula, and E. Anagnostou, 2020: Evaluation of the hyper-resolution model-derived water cycle components over the upper Blue Nile basin. J. Hydrol., 590, 125231, https://doi.org/10.1016/j.jhydrol.2020.125231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., A. Buishand, and W. van Deursen, 2007: Estimates of future discharges of the river Rhine using two scenario methodologies: Direct versus delta approach. Hydrol. Earth Syst. Sci., 11, 11451159, https://doi.org/10.5194/hess-11-1145-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, S. C., and D. J. Karoly, 2013: Evaluation of historical diurnal temperature range trends in CMIP5 models. J. Climate, 26, 90779089, https://doi.org/10.1175/JCLI-D-13-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., J. Sheffield, and E. F. Wood, 2010: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res., 115, D10101, https://doi.org/10.1029/2009JD012882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mamalakis, A., A. Langousis, R. Deidda, and M. Marrocu, 2017: A parametric approach for simultaneous bias correction and high-resolution downscaling of climate model rainfall. Water Resour. Res., 53, 21492170, https://doi.org/10.1002/2016WR019578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2016: Bias correcting climate change simulations—A critical review. Curr. Climate Change Rep., 2, 211220, https://doi.org/10.1007/s40641-016-0050-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., and D. W. Pierce, 2014: Bias correction can modify climate model simulated precipitation changes without adverse effect on the ensemble mean. Hydrol. Earth Syst. Sci., 18, 915925, https://doi.org/10.5194/hess-18-915-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurus, S., and C. Plant, 2016: Skinny-dip: Clustering in a sea of noise. KDD 16: Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD, 1055–1064, https://doi.org/10.1145/2939672.2939740.

    • Crossref
    • Export Citation
  • Miguel, A. S. D., C. C. M. Kyba, J. Zamorano, J. Gallego, and K. J. Gaston, 2020: The nature of the diffuse light near cities detected in nighttime satellite imagery. Sci. Rep., 10, 7829, https://doi.org/10.1038/s41598-020-64673-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monhart, S., C. Spirig, J. Bhend, K. Bogner, C. Schär, and M. A. Liniger, 2018: Skill of subseasonal forecasts in Europe: Effect of bias correction and downscaling using surface observations. J. Geophys. Res. Atmos., 123, 79998016, https://doi.org/10.1029/2017JD027923.

    • Search Google Scholar
    • Export Citation
  • Morcrette, C. J., and Coauthors, 2018: Introduction to CAUSES: Description of weather and climate models and their near-surface temperature errors in 5 day hindcasts near the Southern Great Plains. J. Geophys. Res. Atmos., 123, 26552683, https://doi.org/10.1002/2017JD027199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piani, C., J. Haerter, and E. Coppola, 2010a: Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol., 99, 187192, https://doi.org/10.1007/s00704-009-0134-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piani, C., G. Weedon, M. Best, S. Gomes, P. Viterbo, S. Hagemann, and J. Haerter, 2010b: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J. Hydrol., 395, 199215, https://doi.org/10.1016/j.jhydrol.2010.10.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, C. Z., L. J. Zhan, and A. X. Zhu, 2014: How to apply the Geospatial Data Abstraction Library (GDAL) properly to parallel geospatial raster I/O? Trans. GIS, 18, 950957, https://doi.org/10.1111/tgis.12068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajczak, J., S. Kotlarski, and C. Schar, 2016: Does quantile mapping of simulated precipitation correct for biases in transition probabilities and spell lengths? J. Climate, 29, 16051615, https://doi.org/10.1175/JCLI-D-15-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringard, J., F. Seyler, and L. Linguet, 2017: A quantile mapping bias correction method based on hydroclimatic classification of the Guiana shield. Sensors, 17, 1413, https://doi.org/10.3390/s17061413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., H. Miura, M. Satoh, Y. N. Takayabu, and Y. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826, https://doi.org/10.1175/2009JCLI2890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smitha, P. S., B. Narasimhan, K. P. Sudheer, and H. Annamalai, 2018: An improved bias correction method of daily rainfall data using a sliding window technique for climate change impact assessment. J. Hydrol., 556, 100118, https://doi.org/10.1016/j.jhydrol.2017.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, F., M. L. Roderick, W. H. Lim, and G. D. Farquhar, 2011: Hydroclimatic projections for the Murray‐Darling Basin based on an ensemble derived from Intergovernmental Panel on Climate Change AR4 climate models. Water Resour. Res., 47, W00G02, https://doi.org/10.1029/2010WR009829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Switanek, M. B., and Coauthors, 2017: Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes. Hydrol. Earth Syst. Sci., 21, 26492666, https://doi.org/10.5194/hess-21-2649-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, J., N. J. Potter, F. H. S. Chiew, L. Zhang, B. Wang, J. Vaze, and J. P. Evans, 2015: How does bias correction of regional climate model precipitation affect modelled runoff? Hydrol. Earth Syst. Sci., 19, 711728, https://doi.org/10.5194/hess-19-711-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teshome, A., and J. Zhang, 2019: Increase of extreme drought over Ethiopia under climate warming. Adv. Meteor., 2019, 5235429, https://doi.org/10.1155/2019/5235429.

    • Crossref
    • Export Citation
  • Teutschbein, C., and J. Seibert, 2012: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol., 456–457, 1229, https://doi.org/10.1016/j.jhydrol.2012.05.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., and J. Seibert, 2013: Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? Hydrol. Earth Syst. Sci., 17, 50615077, https://doi.org/10.5194/hess-17-5061-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Themeßl, M. J., A. Gobiet, and A. Leuprecht, 2011: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol., 31, 15301544, https://doi.org/10.1002/joc.2168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Themeßl, M. J., A. Gobiet, and G. Heinrich, 2012: Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change, 112, 449468, https://doi.org/10.1007/s10584-011-0224-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, Y., X. Gao, Z. Han, Y. Xu, Y. Xu, and F. Giorgi, 2020: Bias correction of temperature and precipitation over China for RCM simulations using the QM and QDM methods. Climate Dyn., 57, 1425–1443, https://doi.org/10.1007/s00382-020-05447-4.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2014: A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int. J. Climatol., 34, 20592078, https://doi.org/10.1002/joc.3822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warmerdam, F., 2008: The Geospatial Data Abstraction Library. Open Source Approaches in Spatial Data Handling, G. B. Hall and M. G. Leahy, Eds., Advances in Geographic Information Science, Vol. 2, Springer, 87–104, https://doi.org/10.1007/978-3-540-74831-1_5.

    • Crossref
    • Export Citation
  • Yang, G., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, M., G. Wang, R. Lazin, X. Shen, and E. Anagnostou, 2021: Impact of planting time soil moisture on cereal crop yield in the Upper Blue Nile basin: A novel insight towards agricultural water management. Agric. Water Manage., 243, 106430, https://doi.org/10.1016/j.agwat.2020.106430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., W. Zheng, L. Ren, M. Zhang, Y. Wang, Y. Liu, F. Yuan, and S. Jiang, 2018: Potential impact of climate change to the future streamflow of Yellow River Basin based on CMIP5 data. Proc. IAHS, 376, 97104, https://doi.org/10.5194/piahs-376-97-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., and Coauthors, 2017: Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA, 114, 93269331, https://doi.org/10.1073/pnas.1701762114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., J. C. Bennett, Q. J. Wang, A. Schepen, A. W. Wood, D. E. Robertson, and M.-H. Ramos, 2017: How suitable is quantile mapping for postprocessing GCM precipitation forecasts? J. Climate, 30, 31853196, https://doi.org/10.1175/JCLI-D-16-0652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X., and T. J. Troy, 2018: Agriculturally relevant climate extremes and their trends in the world’s major growing regions. Earth’s Future, 6, 656672, https://doi.org/10.1002/2017EF000687.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 305 280 12
Full Text Views 31 30 2
PDF Downloads 44 42 4

Bias Correction of Mixed Distributions of Temperature with Strong Diurnal Signal

Muhammad Rezaul HaideraUniversity of Connecticut, Storrs, Mansfield, Connecticut

Search for other papers by Muhammad Rezaul Haider in
Current site
Google Scholar
PubMed
Close
,
Malaquias PeñaaUniversity of Connecticut, Storrs, Mansfield, Connecticut

Search for other papers by Malaquias Peña in
Current site
Google Scholar
PubMed
Close
, and
Emmanouil AnagnostouaUniversity of Connecticut, Storrs, Mansfield, Connecticut

Search for other papers by Emmanouil Anagnostou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The performance of first-moment and full-distribution bias-correction methods of monthly temperature distributions for seasonal prediction is analyzed by comparing two approaches: the standard all-in-data procedure and the 6-hourly stratification of data. Five models are applied to remove the systematic errors of the CFSv2 forecasts of temperature for the rainy season in the Ethiopian Blue Nile River basin domain. Using deterministic evaluation measures, it is found that the stratification marginally increases the forecast skill especially in regions where the data distribution of temperature is prominently multimodal. The improvement may be attributed to a split of the mixed distribution into a set of unimodal distributions. A necessary condition for this splitting into unimodal distributions is that the amplitude of the diurnal cycle be larger than the interannual variability in the sample. The maximum improvement of stratification is achieved by the first-moment correction model.

Significance Statement

This paper evaluates bias-correction methods of monthly forecast distributions of temperature to improve seasonal forecast skill. It is found that marginal skill is gained when bias correction of the diurnal cycle is performed. This paper contributes to the discussion on the value of subdaily model output data.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Muhammad Rezaul Haider, muhammad.haider@uconn.edu

Abstract

The performance of first-moment and full-distribution bias-correction methods of monthly temperature distributions for seasonal prediction is analyzed by comparing two approaches: the standard all-in-data procedure and the 6-hourly stratification of data. Five models are applied to remove the systematic errors of the CFSv2 forecasts of temperature for the rainy season in the Ethiopian Blue Nile River basin domain. Using deterministic evaluation measures, it is found that the stratification marginally increases the forecast skill especially in regions where the data distribution of temperature is prominently multimodal. The improvement may be attributed to a split of the mixed distribution into a set of unimodal distributions. A necessary condition for this splitting into unimodal distributions is that the amplitude of the diurnal cycle be larger than the interannual variability in the sample. The maximum improvement of stratification is achieved by the first-moment correction model.

Significance Statement

This paper evaluates bias-correction methods of monthly forecast distributions of temperature to improve seasonal forecast skill. It is found that marginal skill is gained when bias correction of the diurnal cycle is performed. This paper contributes to the discussion on the value of subdaily model output data.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Muhammad Rezaul Haider, muhammad.haider@uconn.edu
Save