• Ahern, K., M. A. Bourassa, R. E. Hart, J. A. Zhang, and R. F. Rogers, 2019: Observed kinematic and thermodynamic structure in the hurricane boundary layer during intensity change. Mon. Wea. Rev., 147, 27652785, https://doi.org/10.1175/MWR-D-18-0380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvey, G. R., E. Zipser, and J. Zawislak, 2020: How does Hurricane Edouard (2014) evolve toward symmetry before rapid intensification? A high-resolution ensemble study. J. Atmos. Sci., 77, 13291351, https://doi.org/10.1175/JAS-D-18-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 39413961, https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., R. P. Worsnop, J. K. Lundquist, and J. A. Zhang, 2017: A simple method for simulating wind profiles in the boundary layer of tropical cyclones. Bound.-Layer Meteor., 162, 475502, https://doi.org/10.1007/s10546-016-0207-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., and C. W. Landsea, 2016: An examination of model and official National Hurricane Center tropical cyclone size forecasts. Wea. Forecasting, 31, 12931300, https://doi.org/10.1175/WAF-D-15-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380398, https://doi.org/10.1175/JCLI-D-12-00061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., M. Xue, and J. Fang, 2018: Rapid intensification of Typhoon Mujigae (2015) under different sea surface temperatures: Structural changes leading to rapid intensification. J. Atmos. Sci., 75, 43134335, https://doi.org/10.1175/JAS-D-18-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., and Coauthors, 2020: The evaluation of real-time Hurricane Analysis and Forecast System (HAFS) stand-alone regional (SAR) model performance for the 2019 Atlantic Hurricane season. Atmosphere, 11, 617, https://doi.org/10.3390/atmos11060617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., B. H. Tang, K. L. Corbosiero, and C. M. Rozoff, 2018: Normalized convective characteristics of tropical cyclone rapid intensification events in the North Atlantic and eastern North Pacific. Mon. Wea. Rev., 146, 11331155, https://doi.org/10.1175/MWR-D-17-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., M. L. Black, and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18, 3244, https://doi.org/10.1175/1520-0434(2003)018<0032:GDWPIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., F. Marks, J. A. Zhang, X. Zhang, J.-W. Bao, and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524541, https://doi.org/10.1175/JAS-D-11-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G. , and Coauthors, 2020: 2019 HFIP R&D activities summary: Recent results and operational implementation, HFIP Tech. Rep. HFIP2020-1, 42 pp., https://repository.library.noaa.gov/view/noaa/26468.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., A. T. Hazelton, and J. A. Zhang, 2021: Improving hurricane boundary layer parameterization scheme based on observations. Earth Space Sci., 8, e2020EA001422, https://doi.org/10.1029/2020EA001422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, A., S. G. Gopalakrishnan, G. J. Alaka, and S. Chiao, 2021: Understanding the role of mean and eddy momentum transport in the rapid intensification of Hurricane Irma (2017) and Hurricane Michael (2018). Atmosphere, 12, 492, https://doi.org/10.3390/atmos12040492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., and C. S. Bretherton, 2019: TKE-based moist eddy-diffusivity mass-flux (EDMF) parameterization for vertical turbulent mixing. Wea. Forecasting, 34, 869886, https://doi.org/10.1175/WAF-D-18-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., M. L. Witek, J. Teixeira, R. Sun, H. Pan, J. K. Fletcher, and C. S. Bretherton, 2016: Implementation in the NCEP GFS of a hybrid eddy-diffusivity mass-flux (EDMF) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Wea. Forecasting, 31, 341352, https://doi.org/10.1175/WAF-D-15-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., W. Wang, Y. C. Kwon, S.-Y. Hong, V. Tallapragada, and F. Yang, 2017: Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Wea. Forecasting, 32, 20052017, https://doi.org/10.1175/WAF-D-17-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, L. M., and S.-J. Lin, 2012: A two-way nested global-regional dynamical core on the cubed-sphere grid. Mon. Wea. Rev., 141, 283306, https://doi.org/10.1175/MWR-D-11-00201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., R. E. Hart, and R. F. Rogers, 2017: Analyzing simulated convective bursts in two Atlantic hurricanes. Part II: Intensity change due to bursts. Mon. Wea. Rev., 145, 30953117, https://doi.org/10.1175/MWR-D-16-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., L. Harris, and S.-J. Lin, 2018: Evaluation of tropical cyclone structure forecasts in a high-resolution version of the multiscale GFDL fvGFS model. Wea. Forecasting, 33, 419442, https://doi.org/10.1175/WAF-D-17-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., and Coauthors, 2021a: 2019 Atlantic hurricane forecasts from the global-nested Hurricane Analysis and Forecast System (HAFS): Composite statistics and key events. Wea. Forecasting, 36, 519538, https://doi.org/10.1175/WAF-D-20-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., and Coauthors, 2021b: 2020 real-time forecasts from the global-nested Hurricane Analysis and Forecast System (HAFSV0.1B). Fourth Special Symp. on Tropical Meteorology and Tropical Cyclone Research and Forecasting: Multiscale Processes and Model Development Part II, virtual, Amer. Meteor. Soc., 12.5, https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/382062.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 24692484, https://doi.org/10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2010: Slab-and height-resolving models of the tropical cyclone boundary layer. Part I: Comparing the simulations. Quart. J. Roy. Meteor. Soc., 136, 16861699, https://doi.org/10.1002/qj.667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501, https://doi.org/10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leighton, H., S. Gopalakrishnan, J. A. Zhang, R. F. Rogers, Z. Zhang, and V. Tallapragada, 2018: Azimuthal distribution of deep convection, environmental factors, and tropical cyclone rapid intensification: A perspective from HWRF ensemble forecasts of Hurricane Edouard (2014). J. Atmos. Sci., 75, 275295, https://doi.org/10.1175/JAS-D-17-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallen, K. J., M. T. Montgomery, and B. Wang, 2005: Reexamining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. J. Atmos. Sci., 62, 408425, https://doi.org/10.1175/JAS-3377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchok, T. P., 2002: How the NCEP tropical cyclone tracker works. 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., P1.13, https://ams.confex.com/ams/25HURR/techprogram/paper_37628.htm.

    • Search Google Scholar
    • Export Citation
  • Marchok, T. P., 2021: Important factors in the tracking of tropical cyclones in operational models. J. Appl. Meteor. Climatol., 60, 12651284, https://doi.org/10.1175/JAMC-D-20-0175.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009a: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Mon. Wea. Rev., 137, 36513674, https://doi.org/10.1175/2009MWR2785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., D. P. Stern, and J. A. Zhang, 2009b: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 36753698, https://doi.org/10.1175/2009MWR2786.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodier, Q., V. Masson, F. Couvreux, and A. Paci, 2017: Evaluation of a buoyancy and shear based mixing length for a turbulence scheme. Front. Earth Sci., 5, 65, https://doi.org/10.3389/feart.2017.00065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601608, https://doi.org/10.1175/2008WAF2222159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and G. L. Thomsen, 2010: Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model. Quart. J. Roy. Meteor. Soc., 136, 16711685, https://doi.org/10.1002/qj.687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2015: Toward clarity on understanding tropical cyclone intensification. J. Atmos. Sci., 72, 30203031, https://doi.org/10.1175/JAS-D-15-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., J. A. Zhang, and M. T. Montgomery, 2017: The dynamics of intensification in a hurricane weather research and forecasting simulation of Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 143, 293308, https://doi.org/10.1002/qj.2922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2009: Reexamining the vertical structure of tangential winds in tropical cyclones: Observations and theory. J. Atmos. Sci., 66, 35793600, https://doi.org/10.1175/2009JAS2916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 16571680, https://doi.org/10.1175/JAS-D-11-010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. R. Brisbois, and D. S. Nolan, 2014: An expanded dataset of hurricane eyewall sizes and slopes. J. Atmos. Sci., 71, 27472762, https://doi.org/10.1175/JAS-D-13-0302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., C. Kieu, Y. Kwon, S. Trahan, Q. Liu, Z. Zhang, and I. Kwon, 2014: Evaluation of storm structure from the operational HWRF Model during 2012 implementation. Mon. Wea. Rev., 142, 43084325, https://doi.org/10.1175/MWR-D-13-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., J. A. Sippel, S. Abarca, L. Zhu, B. Liu, Z. Zhang, A. Mehra, and V. Tallapragada, 2018: Improving NCEP HWRF simulations of surface wind and inflow angle in the eyewall area. Wea. Forecasting, 33, 887898, https://doi.org/10.1175/WAF-D-17-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawislak, J., and Coauthors, 2022: Accomplishments of NOAA’s Airborne Hurricane Field Program and a broader future approach to forecast improvement. Bull. Amer. Meteor. Soc., 103, E311E338, https://doi.org/10.1175/BAMS-D-20-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and E. W. Uhlhorn, 2012: Hurricane sea surface inflow angle and an observation-based parametric model. Mon. Wea. Rev., 140, 35873605, https://doi.org/10.1175/MWR-D-11-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and R. F. Rogers, 2019: Effects of parameterized boundary layer structure on hurricane rapid intensification in shear. Mon. Wea. Rev., 147, 853871, https://doi.org/10.1175/MWR-D-18-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., F. D. Marks, M. T. Montgomery, and S. Lorsolo, 2011: An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139, 14471462, https://doi.org/10.1175/2010MWR3435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 31363155, https://doi.org/10.1175/MWR-D-14-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, and V. Tallapragada, 2017: Impact of parameterized boundary layer structure on tropical cyclone rapid intensification forecasts in HWRF. Mon. Wea. Rev., 145, 14131426, https://doi.org/10.1175/MWR-D-16-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., E. A. Kalina, M. K. Biswas, R. F. Rogers, P. Zhu, and F. D. Marks, 2020: A review and evaluation of planetary boundary layer parameterizations in Hurricane Weather Research and Forecasting model using idealized simulations and observations. Atmosphere, 11, 1091, https://doi.org/10.3390/atmos11101091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., S.-J. Lin, J.-H. Chen, L. M. Harris, X. Chen, and S. L. Rees, 2019: Toward convective-scale prediction within the next generation global prediction system. Bull. Amer. Meteor. Soc., 100, 12251243, https://doi.org/10.1175/BAMS-D-17-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., B. Tyner, J. A. Zhang, E. Aligo, S. Gopalakrishnan, F. D. Marks, A. Mehra, and V. Tallapragada, 2019: Role of eyewall and rainband eddy forcing in tropical cyclone intensification. Atmos. Chem. Phys., 19, 14 28914 310, https://doi.org/10.5194/acp-19-14289-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., A. Hazelton, Z. Zhang, F. D. Marks, and V. Tallapragada, 2021: The role of eyewall turbulent transport in the pathway to intensification of tropical cyclones. J. Geophys. Res. Atmos., 126, e2021JD034983, https://doi.org/10.1029/2021JD034983.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 232 182 26
Full Text Views 78 62 14
PDF Downloads 104 81 16

Comparison of the Performance of the Observation-Based Hybrid EDMF and EDMF-TKE PBL Schemes in 2020 Tropical Cyclone Forecasts from the Global-Nested Hurricane Analysis and Forecast System

Andrew HazeltonaCooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
bNOAA/AOML/HRD, Miami, Florida

Search for other papers by Andrew Hazelton in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9813-3028
,
Jun A. ZhangaCooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
bNOAA/AOML/HRD, Miami, Florida

Search for other papers by Jun A. Zhang in
Current site
Google Scholar
PubMed
Close
, and
Sundararaman GopalakrishnanbNOAA/AOML/HRD, Miami, Florida

Search for other papers by Sundararaman Gopalakrishnan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Better representation of the planetary boundary layer (PBL) in numerical models is one of the keys to improving forecasts of TC structure and intensity, including rapid intensification. To meet this goal, our recent work has used observations to improve the eddy-diffusivity mass flux with prognostic turbulent kinetic energy (EDMF-TKE) PBL scheme in the Hurricane Analysis and Forecast System (HAFS). This study builds on that work by comparing a modified version of EDMF-TKE (MEDMF-TKE) with the hybrid EDMF scheme based on a K-profile method (HEDMF-KP) in the 2020 HAFS-globalnest model. Verification statistics based on 101 cases in the 2020 season demonstrate that MEDMF-TKE improves track forecasts, with a reduction in a large right bias seen in HEDMF-KP forecasts. The comparison of intensity performance is mixed, but the magnitude of low bias at early forecast hours is reduced with the use of the MEDMF-TKE scheme, which produces a wider range of TC intensities. Wind radii forecasts, particularly the radius of maximum wind speed (RMW), are also improved with the MEDMF-TKE scheme. Composites of TC inner-core structure in and above the PBL highlight and explain differences between the two sets of forecasts, with MEDMF-TKE having a stronger and shallower inflow layer, stronger eyewall vertical velocity, and more moisture in the eyewall region. A case study of Hurricane Laura shows that MEDMF-TKE better represented the subtropical ridge and thus the motion of the TC. Finally, analysis of Hurricane Delta through a tangential wind budget highlights how and why MEDMF-TKE leads to faster spinup of the vortex and a better prediction of rapid intensification.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew Hazelton, Andrew.Hazelton@noaa.gov

Abstract

Better representation of the planetary boundary layer (PBL) in numerical models is one of the keys to improving forecasts of TC structure and intensity, including rapid intensification. To meet this goal, our recent work has used observations to improve the eddy-diffusivity mass flux with prognostic turbulent kinetic energy (EDMF-TKE) PBL scheme in the Hurricane Analysis and Forecast System (HAFS). This study builds on that work by comparing a modified version of EDMF-TKE (MEDMF-TKE) with the hybrid EDMF scheme based on a K-profile method (HEDMF-KP) in the 2020 HAFS-globalnest model. Verification statistics based on 101 cases in the 2020 season demonstrate that MEDMF-TKE improves track forecasts, with a reduction in a large right bias seen in HEDMF-KP forecasts. The comparison of intensity performance is mixed, but the magnitude of low bias at early forecast hours is reduced with the use of the MEDMF-TKE scheme, which produces a wider range of TC intensities. Wind radii forecasts, particularly the radius of maximum wind speed (RMW), are also improved with the MEDMF-TKE scheme. Composites of TC inner-core structure in and above the PBL highlight and explain differences between the two sets of forecasts, with MEDMF-TKE having a stronger and shallower inflow layer, stronger eyewall vertical velocity, and more moisture in the eyewall region. A case study of Hurricane Laura shows that MEDMF-TKE better represented the subtropical ridge and thus the motion of the TC. Finally, analysis of Hurricane Delta through a tangential wind budget highlights how and why MEDMF-TKE leads to faster spinup of the vortex and a better prediction of rapid intensification.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew Hazelton, Andrew.Hazelton@noaa.gov
Save