• Aberson, S. D., 1998: Five-day tropical cyclone track forecasts in the North Atlantic basin. Wea. Forecasting, 13, 10051015, https://doi.org/10.1175/1520-0434(1998)013<1005:FDTCTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alemany, S., J. Beltran, A. Perez, and S. Ganzfried, 2019: Predicting hurricane trajectories using a recurrent neural network. Proc. Conf. AAAI Artif. Intell., 33, 468475, https://doi.org/10.1609/aaai.v33i01.3301468.

    • Search Google Scholar
    • Export Citation
  • Bahdanau, D., K. Cho, and Y. Bengio, 2015: Neural machine translation by jointly learning to align and translate. arXiv, 1409.0473, https://doi.org/10.48550/arXiv.1409.0473.

    • Search Google Scholar
    • Export Citation
  • Bian, G.-F., G.-Z. Nie, and X. Qiu, 2021: How well is outer tropical cyclone size represented in the ERA5 reanalysis dataset? Atmos. Res., 249, 105339, https://doi.org/10.1016/j.atmosres.2020.105339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biswas, M. K., and Coauthors, 2018: Hurricane Weather Research and Forecasting (HWRF) Model: 2018 scientific documentation. Developmental Testbed Center, 112 pp.

    • Search Google Scholar
    • Export Citation
  • Burg, T., and S. P. Lillo, 2020: Tropycal: A Python package for analyzing tropical cyclones and more. 34th Conf. on Hurricanes and Tropical Meteorology, online, Amer. Meteor. Soc., 16B.9, https://ams.confex.com/ams/34HURR/meetingapp.cgi/Paper/373965.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., 2020: National hurricane center forecast verification report: 2020 hurricane season. National Hurricane Center, 77 pp., https://www.nhc.noaa.gov/verification/pdfs/Verification_2020.pdf.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., E. Blake, M. DeMaria, A. Penny, A. Latto, E. Rappaport, and V. Tallapragada, 2020: Recent progress in tropical cyclone intensity forecasting at the National Hurricane Center. Wea. Forecasting, 35, 19131922, https://doi.org/10.1175/WAF-D-20-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., X. Wang, W. Zhang, X. Zhu, A. Li, and C. Yang, 2019: A hybrid CNN-LSTM model for typhoon formation forecasting. GeoInformatica, 23, 375396, https://doi.org/10.1007/s10707-019-00355-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., and C. Guestrin, 2016: XGBoost: A scalable tree boosting system. KDD’16 Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, New York, NY, Association for Computing Machinery, 785794.

    • Search Google Scholar
    • Export Citation
  • Chung, J., Ç. Gülçehre, K. Cho, and Y. Bengio, 2014: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv, 1412.3555, https://doi.org/10.48550/arXiv.1412.3555.

    • Search Google Scholar
    • Export Citation
  • De Lathauwer, L., B. De Moor, and J. Vandewalle, 2000: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl., 21, 12531278, https://doi.org/10.1137/S0895479896305696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECWMF, 2019: IFS documentation CY46R1—Part III: Dynamics and numerical procedures. ECMWF, No. 3, 31 pp., https://www.ecmwf.int/node/19307.

    • Search Google Scholar
    • Export Citation
  • Gao, S., P. Zhao, B. Pan, Y. Li, M. Zhou, J. Xu, S. Zhong, and Z. Shi, 2018: A nowcasting model for the prediction of typhoon tracks based on a long short term memory neural network. Acta Oceanol. Sin., 37, 812, https://doi.org/10.1007/s13131-018-1219-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giffard-Roisin, S., M. Yang, G. Charpiat, C. Kumler Bonfanti, B. Kégl, and C. Monteleoni, 2020: Tropical cyclone track forecasting using fused deep learning from aligned reanalysis data. Front. Big Data, 3, 1, https://doi.org/10.3389/fdata.2020.00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodfellow, I., Y. Bengio, and A. Courville, 2016: Deep Learning. The MIT Press, 800 pp.

  • Grinsted, A., P. Ditlevsen, and J. H. Christensen, 2019: Normalized us hurricane damage estimates using area of total destruction, 1900–2018. Proc. Natl. Acad. Sci. USA, 116, 23 94223 946, https://doi.org/10.1073/pnas.1912277116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T., G. Bates, J. Whitaker, D. Murray, M. Fiorino, T. Galarneau, Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, https://doi.org/10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harper, B., J. Kepert, and J. Ginger, 2010: Guidelines for converting between various wind averaging periods in tropical cyclone conditions. Tech. Doc. WMO/TD-1555, WMO, 64 pp., https://library.wmo.int/doc_num.php?explnum_id=290.

    • Search Google Scholar
    • Export Citation
  • He, K., X. Zhang, S. Ren, and J. Sun, 2016: Deep residual learning for image recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, Institute of Electrical and Electronics Engineers, 770778.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hinton, G., O. Vinyals, and J. Dean, 2015: Distilling the knowledge in a neural network. arXiv, 1503.02531, http://arxiv.org/abs/1503.02531.

    • Search Google Scholar
    • Export Citation
  • Hodges, K., A. Cobb, and P. L. Vidale, 2017: How well are tropical cyclones represented in reanalysis datasets? J. Climate, 30, 52435264, https://doi.org/10.1175/JCLI-D-16-0557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiela, D., and L. Bottou, 2014: Learning image embeddings using convolutional neural networks for improved multi-modal semantics. Proc. 2014 Conf. on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, Association for Computational Linguistics, 3645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingma, D., and J. Ba, 2014: Adam: A method for stochastic optimization. arXiv, 1415.6980, https://arxiv.org/abs/1412.6980.

  • Knaff, J., M. DeMaria, C. Sampson, and J. Gross, 2003: Statistical 5-day tropical cyclone intensity forecasts derived from climatology and persistence. Wea. Forecasting, 18, 8092, https://doi.org/10.1175/1520-0434(2003)018<0080:SDTCIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2017: ImageNet classification with deep convolutional neural networks. Comput. ACM, 60, 8490, https://doi.org/10.1145/3065386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, 1989: Backpropagation applied to handwritten zip code recognition. Neural Comput., 1, 541551, https://doi.org/10.1162/neco.1989.1.4.541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, J., P. Dong, Y. Zhang, J. Pan, and K. Liu, 2020: A novel data-driven tropical cyclone track prediction model based on CNN and GRU with multi-dimensional feature selection. IEEE Access, 8, 97 11497 128, https://doi.org/10.1109/ACCESS.2020.2992083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moradi Kordmahalleh, M., M. Gorji Sefidmazgi, and A. Homaifar, 2016: A sparse recurrent neural network for trajectory prediction of Atlantic hurricanes. GECCO’16: Proc. Genetic and Evolutionary Computation Conf. 2016, Denver, CO, Association for Computing Machinery, 957964, https://doi.org/10.1145/2908812.2908834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mudigonda, M., and Coauthors, 2017: Segmenting and tracking extreme climate events using neural networks. 31st Conf. on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, Neural Information Processing Systems, https://dl4physicalsciences.github.io/files/nips_dlps_2017_20.pdf.

    • Search Google Scholar
    • Export Citation
  • National Hurricane Center, 2021: Automated Tropical Cyclone Forecasting System (ATCF). National Hurricane Center (NHC), accessed 4 June 2021, https://ftp.nhc.noaa.gov/atcf/.

    • Search Google Scholar
    • Export Citation
  • Paszke, A., and Coauthors, 2019: Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems 32, H. Wallach et al., Eds., Curran Associates, Inc., 80248035.

    • Search Google Scholar
    • Export Citation
  • Rumelhart, D. E., G. E. Hinton, and R. J. Williams, 1987: Learning internal representations by error propagation. Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations, D. E. Rumelhart and J. L. McClelland, Eds., MIT Press, 318362.

    • Search Google Scholar
    • Export Citation
  • Sampson, C., and A. J. Schrader, 2000: The Automated Tropical Cyclone Forecasting System (version 3.2). Bull. Amer. Meteor. Soc., 81, 12311240, https://doi.org/10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C., J. L. Franklin, J. A. Knaff, and M. DeMaria, 2008: Experiments with a simple tropical cyclone intensity consensus. Wea. Forecasting, 23, 304312, https://doi.org/10.1175/2007WAF2007028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., and R. E. Hart, 2012: An examination of tropical cyclone position, intensity, and intensity life cycle within atmospheric reanalysis datasets. J. Climate, 25, 34533475, https://doi.org/10.1175/2011JCLI4208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimada, U., H. Owada, M. Yamaguchi, T. Iriguchi, M. Sawada, K. Aonashi, M. DeMaria, and K. D. Musgrave, 2018: Further improvements to The Statistical Hurricane Intensity Prediction Scheme using tropical cyclone rainfall and structural features. Wea. Forecasting, 33, 15871603, https://doi.org/10.1175/WAF-D-18-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simon, A., A. B. Penny, M. DeMaria, J. L. Franklin, R. J. Pasch, E. N. Rappaport, and D. A. Zelinsky, 2018: A description of the real-time HFIP Corrected Consensus Approach (HCCA) for tropical cyclone track and intensity guidance. Wea. Forecasting, 33, 3757, https://doi.org/10.1175/WAF-D-17-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H., L. Wu, J. H. Jiang, R. Pai, A. Liu, A. J. Zhai, P. Tavallali, and M. DeMaria, 2020: Applying satellite observations of tropical cyclone internal structures to rapid intensification forecast with machine learning. Geophys. Res. Lett., 47, e2020GL089102, https://doi.org/10.1029/2020GL089102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, C., F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, 2018: A survey on deep transfer learning. arXiv, 1808.01974, https://doi.org/10.48550/arXiv.1808.01974.

    • Search Google Scholar
    • Export Citation
  • Van Rossum, G., and F. L. Drake Jr., 1995: Python Tutorial. Centrum voor Wiskunde en Informatica, 54 pp.

  • Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, and L. Kaiser, 2017: Attention is all you need. 31st Conf. on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, Neural Information Processing Systems, 11 pp., https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

    • Search Google Scholar
    • Export Citation
  • Yosinski, J., J. Clune, Y. Bengio, and H. Lipson, 2014: How transferable are features in deep neural networks? arXiv, 1411.1792, https://doi.org/10.48550/arXiv.1411.1792.

    • Search Google Scholar
    • Export Citation
  • Zou, H., and T. Hastie, 2005: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc., 67B, 301320, https://doi.org/10.1111/j.1467-9868.2005.00503.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1213 1197 96
Full Text Views 220 219 7
PDF Downloads 253 252 8

Hurricane Forecasting: A Novel Multimodal Machine Learning Framework

Léonard BoussiouxaOperations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Léonard Boussioux in
Current site
Google Scholar
PubMed
Close
,
Cynthia ZengaOperations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Cynthia Zeng in
Current site
Google Scholar
PubMed
Close
,
Théo GuénaisbSchool of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Théo Guénais in
Current site
Google Scholar
PubMed
Close
, and
Dimitris BertsimascSloan School of Management and Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Dimitris Bertsimas in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes a novel machine learning (ML) framework for tropical cyclone intensity and track forecasting, combining multiple ML techniques and utilizing diverse data sources. Our multimodal framework, called Hurricast, efficiently combines spatial–temporal data with statistical data by extracting features with deep learning encoder–decoder architectures and predicting with gradient-boosted trees. We evaluate our models in the North Atlantic and eastern Pacific basins in 2016–19 for 24-h lead-time track and intensity forecasts and show they achieve comparable mean absolute error and skill to current operational forecast models while computing in seconds. Furthermore, the inclusion of Hurricast into an operational forecast consensus model could improve upon the National Hurricane Center’s official forecast, thus highlighting the complementary properties with existing approaches. In summary, our work demonstrates that utilizing machine learning techniques to combine different data sources can lead to new opportunities in tropical cyclone forecasting.

Significance Statement

Machine learning techniques have not been fully explored for improving tropical cyclone movement and intensity changes. This work shows how advanced machine learning techniques combined with routinely available information can be used to improve 24-h tropical cyclone forecasts efficiently. The successes demonstrated for 24-h forecasts provide a recipe for improving predictions for longer lead times, further reducing forecast uncertainties and benefiting society.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Boussioux and Zeng: Equal contribution.

Corresponding author: Dimitris Berstimas, dbertsim@mit.edu

Abstract

This paper describes a novel machine learning (ML) framework for tropical cyclone intensity and track forecasting, combining multiple ML techniques and utilizing diverse data sources. Our multimodal framework, called Hurricast, efficiently combines spatial–temporal data with statistical data by extracting features with deep learning encoder–decoder architectures and predicting with gradient-boosted trees. We evaluate our models in the North Atlantic and eastern Pacific basins in 2016–19 for 24-h lead-time track and intensity forecasts and show they achieve comparable mean absolute error and skill to current operational forecast models while computing in seconds. Furthermore, the inclusion of Hurricast into an operational forecast consensus model could improve upon the National Hurricane Center’s official forecast, thus highlighting the complementary properties with existing approaches. In summary, our work demonstrates that utilizing machine learning techniques to combine different data sources can lead to new opportunities in tropical cyclone forecasting.

Significance Statement

Machine learning techniques have not been fully explored for improving tropical cyclone movement and intensity changes. This work shows how advanced machine learning techniques combined with routinely available information can be used to improve 24-h tropical cyclone forecasts efficiently. The successes demonstrated for 24-h forecasts provide a recipe for improving predictions for longer lead times, further reducing forecast uncertainties and benefiting society.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Boussioux and Zeng: Equal contribution.

Corresponding author: Dimitris Berstimas, dbertsim@mit.edu
Save