• Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF Ensemble Prediction System. J. Atmos. Sci., 66, 603626, https://doi.org/10.1175/2008JAS2677.1.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125, 28872908, https://doi.org/10.1002/qj.49712556006.

    • Search Google Scholar
    • Export Citation
  • Colella, P., and P. R. Woodward, 1984: The Piecewise Parabolic Method (PPM) for gas-dynamical simulations. J. Comput. Phys., 54, 174201, https://doi.org/10.1016/0021-9991(84)90143-8.

    • Search Google Scholar
    • Export Citation
  • Gao, K., L. Harris, L. Zhou, M. A. Bender, and M. J. Morin, 2021: On the sensitivity of hurricane intensity and structure to horizontal tracer advection schemes in FV3. J. Atmos. Sci., 78, 30073021, https://doi.org/10.1175/JAS-D-20-0331.1.

    • Search Google Scholar
    • Export Citation
  • Guan, H., and Coauthors, 2022: GEFSv12 reforecast dataset for supporting subseasonal and hydrometeorological applications. Mon. Wea. Rev., 150, 647665, https://doi.org/10.1175/MWR-D-21-0245.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluation numerical precipitation forecasts. Wea. Forecasting, 14, 155167, https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and S. L. Mullen, 2006: Reforecasts, an important dataset for improving weather predictions. Bull. Amer. Meteor. Soc., 87, 3346, https://doi.org/10.1175/BAMS-87-1-33.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: Precipitation. Mon. Wea. Rev., 136, 26202632, https://doi.org/10.1175/2007MWR2411.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, https://doi.org/10.1175/BAMS-D-12-00014.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Coauthors, 2021: The reanalysis for the Global Ensemble Forecast System, version 12. Mon. Wea. Rev., 150, 5979, https://doi.org/10.1175/MWR-D-21-0023.1.

    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520533, https://doi.org/10.1175/WAF-D-10-05038.1.

    • Search Google Scholar
    • Export Citation
  • Han, J., W. Wang, Y. C. Kwon, S.-Y. Hong, V. Tallapragada, and F. Yang, 2017: Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Wea. Forecasting, 32, 20052017, https://doi.org/10.1175/WAF-D-17-0046.1.

    • Search Google Scholar
    • Export Citation
  • Harris, L., and S. J. Lin, 2013: A two‐way nested global‐regional dynamical core on the cubed‐sphere grid. Mon. Wea. Rev., 141, 283306, https://doi.org/10.1175/MWR-D-11-00201.1.

    • Search Google Scholar
    • Export Citation
  • Harris, L., X. Chen, L. Zhou, and J.-H. Chen, 2020a: The nonhydrostatic solver of the GFDL finite-volume cubed-sphere dynamical core. Tech. Memo. 2020-003, Geophysical Fluid Dynamics Laboratory, 6 pp., https://repository.library.noaa.gov/view/noaa/27489.

    • Search Google Scholar
    • Export Citation
  • Harris, L., and Coauthors, 2020b: GFDL SHiELD: A unified system for weather-to-seasonal prediction. J. Adv. Model. Earth Syst., 12, e2020MS002223, https://doi.org/10.1029/2020MS002223.

    • Search Google Scholar
    • Export Citation
  • Hou, D., Z. Toth, and Y. Zhu, 2006: A stochastic parameterization scheme within NCEP Global Ensemble Forecast System. 18th Conf. on Probability and Statistics in the Atmospheric Sciences, Atlanta, GA, Amer. Meteor. Soc., 4.5, https://ams.confex.com/ams/Annual2006/techprogram/paper_101401.htm.

    • Search Google Scholar
    • Export Citation
  • Hou, D., Z. Toth, Y. Zhu, and W. Yang, 2008: Impact of a stochastic perturbation scheme on NCEP Global Ensemble Forecast System. 19th Conf. on Probability and Statistics in the Atmospheric Sciences, New Orleans, LA, Amer. Meteor. Soc., 1.1, https://ams.confex.com/ams/88Annual/techprogram/paper_134165.htm.

    • Search Google Scholar
    • Export Citation
  • Hou, D., and Coauthors, 2014: Climatology-calibrated precipitation analysis at fine scales: Statistical adjustment of stage IV toward CPC gauge-based analysis. J. Hydrometeor., 15, 25422557, https://doi.org/10.1175/JHM-D-11-0140.1.

    • Search Google Scholar
    • Export Citation
  • Ji, M., and F. Toepfer, 2016: Dynamical core evaluation test report for NOAA’s Next Generation Global Prediction System (NGGPS). NOAA IR ID 18653, 93 pp., https://doi.org/10.25923/ztzy-qn82.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., Q. A. Fu, K. N. Liou, and H. N. S. Chin, 1995: Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34, 281287, https://doi.org/10.1175/1520-0450-34.1.281.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 20302045, https://doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 27912801, https://doi.org/10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., 2018: Ensemble size: How suboptimal is less than infinity? Quart. J. Roy. Meteor. Soc., 145 (Suppl.), 107128, https://doi.org/10.1002/qj.3387.

    • Search Google Scholar
    • Export Citation
  • Li, W., and Coauthors, 2018: Evaluating the MJO prediction skill from different configurations of NCEP GEFS extended forecast. Climate Dyn., 52, 49234936, https://doi.org/10.1007/s00382-018-4423-9.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 1997: A finite‐volume integration method for computing pressure gradient force in general vertical coordinates. Quart. J. Roy. Meteor. Soc., 123, 17491762, https://doi.org/10.1002/qj.49712354214.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite‐volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., and R. B. Rood, 1996: Multidimensional flux‐form Semi‐Lagrangian transport schemes. Mon. Wea. Rev., 124, 20462070, https://doi.org/10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., and R. B. Rood, 1997: An explicit flux-form semi-Langrangian shallow-water model on the sphere. Quart. J. Roy. Meteor. Soc., 123, 24772498, https://doi.org/10.1002/qj.49712354416.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snowfield in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., S. J. Lord, N. Surgi, Y. Zhu, R. Wobus, Z. Toth, and T. Marchok, 2006: Hurricane relocation in global ensemble forecast system. 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., P5.13, https://ams.confex.com/ams/pdfpapers/108503.pdf.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 28362848, https://doi.org/10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, https://doi.org/10.1002/qj.49712353704.

    • Search Google Scholar
    • Export Citation
  • Ma, J., Y. Zhu, D. Wobus, and P. Wang, 2012: An effective configuration of ensemble size and horizontal resolution for the NCEP GEFS. Adv. Atmos. Sci., 29, 782794, https://doi.org/10.1007/s00376-012-1249-y.

    • Search Google Scholar
    • Export Citation
  • McCormack, J. P., S. D. Eckermann, D. E. Siskind, and T. J. McGee, 2006: CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models. Atmos. Chem. Phys., 6, 49434972, https://doi.org/10.5194/acp-6-4943-2006.

    • Search Google Scholar
    • Export Citation
  • McCormack, J. P., K. W. Hoppel, and D. E. Siskind, 2008: Parameterization of middle atmospheric water vapor photochemistry for high-altitude NWP and data assimilation. Atmos. Chem. Phys., 8, 75197532, https://doi.org/10.5194/acp-8-7519-2008.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1997: On parametrizing scales that are only somewhat smaller than the smallest resolved scales, with application to convection and orography. Workshop on New Insights and Approaches to Convective Parameterization, Reading, United Kingdom, ECMWF, 328337, https://www.ecmwf.int/node/11493.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parameterization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127, 279304, https://doi.org/10.1002/qj.49712757202.

    • Search Google Scholar
    • Export Citation
  • Pegion, K., and Coauthors, 2019: The Subseasonal Experiment (SubX): A multi‐model subseasonal prediction experiment. Bull. Amer. Meteor. Soc., 100, 20432060, https://doi.org/10.1175/BAMS-D-18-0270.1.

    • Search Google Scholar
    • Export Citation
  • Putman, M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, https://doi.org/10.1016/j.jcp.2007.07.022.

    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2001: Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Quart. J. Roy. Meteor. Soc., 127, 24732489, https://doi.org/10.1002/qj.49712757715.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP climate forecast system version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102, https://doi.org/10.1256/qj.04.106.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 2016: User manual and system documentation of WAVEWATCH III version 5.16. NOAA/NWS/NCEP/MMAB Tech. Note 329, 361 pp., https://polar.ncep.noaa.gov/waves/wavewatch/manual.v5.16.pdf.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330, https://doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., O. Talagrand, G. Candille, and Y. Zhu, 2003: Probability and ensemble forecasts. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, I. T. Jolliffe and D. B. Stephenson, Eds., John Wiley and Sons, 137163.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., O. Talagrand, and Y. Zhu, 2006: The attributes of forecast systems. Predictability of Weather and Climate, T. N. Palmer and R. Hagedorn, Eds., Cambridge University Press, 584595.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and Coauthors, 2018: The implementation of NEMS GFS Aerosol Component (NGAC) Version 2.0 for global multispecies forecasting at NOAA/NCEP – Part 1: Model descriptions. Geosci. Model Dev., 11, 23152332, https://doi.org/10.5194/gmd-11-2315-2018.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., S.-J. Lin, J.-H. Chen, L. M. Harris, X. Chen, and S. L. Rees, 2019: Toward convective‐scale prediction within the Next Generation Global Prediction System. Bull. Amer. Meteor. Soc., 100, 12251243, https://doi.org/10.1175/BAMS-D-17-0246.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., Y. Zhu, D. Hou, and D. Kleist, 2016: Comparison of the ensemble transform and the ensemble Kalman filter in the NCEP Global Ensemble Forecast System. Wea. Forecasting, 31, 20572074, https://doi.org/10.1175/WAF-D-16-0109.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., Y. Zhu, D. Hou, Y. Luo, J. Peng, and D. Wobus, 2017: Performance of the new NCEP Global Ensemble Forecast System in a parallel experiment. Wea. Forecasting, 32, 19892004, https://doi.org/10.1175/WAF-D-17-0023.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Z. Toth, 2008: Ensemble-based probabilistic forecast verification. 19th Conf. on Probability and Statistics in the Atmospheric Sciences, New Orleans, LA, Amer. Meteor. Soc., 2.2, https://ams.confex.com/ams/88Annual/webprogram/Paper131645.html.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., X. Zhou, M. Peña, W. Li, C. Melhauser, and D. Hou, 2017: Impact of sea surface temperature forcing on weeks 3 and 4 forecast skill in the NCEP Global Ensemble Forecasting System. Wea. Forecasting, 32, 21592174, https://doi.org/10.1175/WAF-D-17-0093.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Coauthors, 2018: Toward the improvement of subseasonal prediction in the National Centers for the Environmental Prediction Global Ensemble Forecast System. J. Geophys. Res. Atmos., 123, 67326745, https://doi.org/10.1029/2018JD028506.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., W. Li, X. Zhou, and D. Hou, 2019: Stochastic representation of NCEP GEFS to improve sub-seasonal forecast. Current Trends in the Representation of Physical Processes in Weather and Climate Models, D. A. Randall et al., Eds., Springer, 317328.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1121 1121 114
Full Text Views 359 359 39
PDF Downloads 420 420 42

The Development of the NCEP Global Ensemble Forecast System Version 12

Xiaqiong ZhouaCPAESS, University Corporation for Atmospheric Research at NCEP/EMC and GFDL, Princeton, New Jersey

Search for other papers by Xiaqiong Zhou in
Current site
Google Scholar
PubMed
Close
,
Yuejian ZhubNOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Yuejian Zhu in
Current site
Google Scholar
PubMed
Close
,
Dingchen HoubNOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Dingchen Hou in
Current site
Google Scholar
PubMed
Close
,
Bing FucIMSG at NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Bing Fu in
Current site
Google Scholar
PubMed
Close
,
Wei LicIMSG at NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Wei Li in
Current site
Google Scholar
PubMed
Close
,
Hong GuandSRG at NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Hong Guan in
Current site
Google Scholar
PubMed
Close
,
Eric SinskycIMSG at NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Eric Sinsky in
Current site
Google Scholar
PubMed
Close
,
Walter KolczynskicIMSG at NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Walter Kolczynski in
Current site
Google Scholar
PubMed
Close
,
Xianwu XuedSRG at NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Xianwu Xue in
Current site
Google Scholar
PubMed
Close
,
Yan LuocIMSG at NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Yan Luo in
Current site
Google Scholar
PubMed
Close
,
Jiayi PengcIMSG at NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Jiayi Peng in
Current site
Google Scholar
PubMed
Close
,
Bo YangdSRG at NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Bo Yang in
Current site
Google Scholar
PubMed
Close
,
Vijay TallapragadabNOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Vijay Tallapragada in
Current site
Google Scholar
PubMed
Close
, and
Philip PegioneNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Philip Pegion in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Global Ensemble Forecast System (GEFS) is upgraded to version 12, in which the legacy Global Spectral Model (GSM) is replaced by a model with a new dynamical core—the Finite Volume Cubed-Sphere Dynamical Core (FV3). Extensive tests were performed to determine the optimal model and ensemble configuration. The new GEFS has cubed-sphere grids with a horizontal resolution of about 25 km and an increased ensemble size from 20 to 30. It extends the forecast length from 16 to 35 days to support subseasonal forecasts. The stochastic total tendency perturbation (STTP) scheme is replaced by two model uncertainty schemes: the stochastically perturbed physics tendencies (SPPT) scheme and stochastic kinetic energy backscatter (SKEB) scheme. Forecast verification is performed on a period of more than two years of retrospective runs. The results show that the upgraded GEFS outperforms the operational-at-the-time version by all measures included in the GEFS verification package. The new system has a better ensemble error–spread relationship, significantly improved skills in large-scale environment forecasts, precipitation probability forecasts over CONUS, tropical cyclone track and intensity forecasts, and significantly reduced 2-m temperature biases over North America. GEFSv12 was implemented on 23 September 2020.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaqiong Zhou, xiaqiong.zhou@noaa.gov

Abstract

The Global Ensemble Forecast System (GEFS) is upgraded to version 12, in which the legacy Global Spectral Model (GSM) is replaced by a model with a new dynamical core—the Finite Volume Cubed-Sphere Dynamical Core (FV3). Extensive tests were performed to determine the optimal model and ensemble configuration. The new GEFS has cubed-sphere grids with a horizontal resolution of about 25 km and an increased ensemble size from 20 to 30. It extends the forecast length from 16 to 35 days to support subseasonal forecasts. The stochastic total tendency perturbation (STTP) scheme is replaced by two model uncertainty schemes: the stochastically perturbed physics tendencies (SPPT) scheme and stochastic kinetic energy backscatter (SKEB) scheme. Forecast verification is performed on a period of more than two years of retrospective runs. The results show that the upgraded GEFS outperforms the operational-at-the-time version by all measures included in the GEFS verification package. The new system has a better ensemble error–spread relationship, significantly improved skills in large-scale environment forecasts, precipitation probability forecasts over CONUS, tropical cyclone track and intensity forecasts, and significantly reduced 2-m temperature biases over North America. GEFSv12 was implemented on 23 September 2020.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaqiong Zhou, xiaqiong.zhou@noaa.gov
Save